如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F 在 BC 的延长线上,且 BE = CF .
求证:(1) ΔABE ≅ ΔDCF ;
(2)四边形 AEFD 是平行四边形.
某地方教育局为了解去年九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是 ;(3)扇形统计图中A级所在的扇形的圆心角度数是 ;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。求证:(1)△ADF≌△CBE;(2)EB∥DF。
先化简,再求值:,其中,。
如图,已知直线分别与y轴,x轴交于A,B两点,点M在y轴上,以点M为圆心的圆M与直线AB相切于点D,连结MD.(1)求证:∽; (2)如果圆M的半径为,请求出点M的坐标,并写出以为顶点,且过点M的抛物线的解析式;(3)在(2)的条件下,试问此抛物线上是否存在点P,使得以P、A、M三点为顶点的三角形与相似,如果存在,请求出所有符合条件的点P的坐标,如果不存在,请说明理由。
阅读下列材料,按要求解答问题:如图2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通过以下计算:由题意,∠B=30°,∠C=90°,c=2b,a=b,得a2-b2=(b)2-b2=2b2=b·c.即a2-b2= bc.于是,小明猜测:对于任意的ΔABC,当∠A=2∠B时,关系式a2-b2=bc都成立.(1)如图2-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图2-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.