初中数学

如图,在四边形中,,对角线的垂直平分线与边分别相交于点

(1)求证:四边形是菱形;

(2)若,求菱形的周长.

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,AC是矩形ABCD的对角线,过AC的中点OEFAC,交BC于点E,交AD于点F,连接AECF

(1)求证:四边形AECF是菱形;

(2)若AB,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, BAC = 90 ° E BC 的中点, AD / / BC AE / / DC EF CD 于点 F

(1)求证:四边形 AECD 是菱形;

(2)若 AB = 6 BC = 10 ,求 EF 的长.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AC BD 相交于点 O ,且 AO = CO ,点 E BD 上,满足 EAO = DCO

(1)求证:四边形 AECD 是平行四边形;

(2)若 AB = BC CD = 5 AC = 8 ,求四边形 AECD 的面积.

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,将对角线 AC 分别向两端延长到点 E F ,使得 AE = CF .连接 DE DF BE BF

求证:四边形 BEDF 是菱形.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E F 分别是 AB BC 的中点, CE AB ,垂足为 E AF BC ,垂足为 F AF CE 相交于点 G

(1)证明: ΔCFG ΔAEG

(2)若 AB = 4 ,求四边形 AGCD 的对角线 GD 的长.

来源:2017年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

菱形 ABCD 的对角线 AC BD 相交于点 O 0 ° < ABO 60 ° ,点 G 是射线 OD 上一个动点,过点 G GE / / DC 交射线 OC 于点 E ,以 OE OG 为邻边作矩形 EOGF

(1)如图1,当点 F 在线段 DC 上时,求证: DF = FC

(2)若延长 AD 与边 GF 交于点 H ,将 ΔGDH 沿直线 AD 翻折 180 ° 得到 ΔMDH

①如图2,当点 M EG 上时,求证:四边形 EOGF 为正方形;

②如图3,当 tan ABO 为定值 m 时,设 DG = k · DO k 为大于0的常数,当且仅当 k > 2 时,点 M 在矩形 EOGF 的外部,求 m 的值.

来源:2020年湖北省宜昌市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,已知在中,分别是的中点,连结

(1)求证:四边形是平行四边形;

(2)若,求四边形的周长.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,将沿着边翻折,得到,且

(1)判断四边形的形状,并说明理由;

(2)若,求四边形的面积.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图, ΔABD 中, ABD = ADB

(1)作点 A 关于 BD 的对称点 C ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)在(1)所作的图中,连接 BC DC ,连接 AC ,交 BD 于点 O

①求证:四边形 ABCD 是菱形;

②取 BC 的中点 E ,连接 OE ,若 OE = 13 2 BD = 10 ,求点 E AD 的距离.

来源:2020年广东省广州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质解答题