初中数学

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

请阅读下列材料,并完成相应的任务:

在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形两边上分别取一点,使得.(如图)解决这个问题的操作步骤如下:

第一步,在上作出一点,使得,连接.第二步,在上取一点,作,交于点,并在上取一点,使.第三步,过点,交于点.第四步,过点,交于点,再过点,交于点

则有

下面是该结论的部分证明:

证明:

同理可得

任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形的形状,并加以证明;

(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成的证明过程;

(3)上述解决问题的过程中,通过作平行线把四边形放大得到四边形,从而确定了点的位置,这里运用了下面一种图形的变化是  

.平移             .旋转            .轴对称           .位似

来源:2018年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 为切点, APB = 60 ° ,连接 PO 并延长与 O 交于 C 点,连接 AC BC

(1)求证:四边形 ACBP 是菱形;

(2)若 O 半径为1,求菱形 ACBP 的面积.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:

(1)在图①中,以为对角线画一个菱形,且为格点;

(2)在图②中,以为对角线画一个对边不相等的四边形,且为格点,

来源:2019年吉林省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E F 是对角线 AC 上的两点,且 AE = CF .连接 DE DF BE BF

(1)证明: ΔADE ΔCBF

(2)若 AB = 4 2 AE = 2 ,求四边形 BEDF 的周长.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在四边形中,,对角线交于点平分,过点的延长线于点,连接

(1)求证:四边形是菱形;

(2)若,求的长.

来源:2018年北京市中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB = AD BD 平分 ABC AC BD ,垂足为点 O

(1)求证:四边形 ABCD 是菱形;

(2)若 CD = 3 BD = 2 5 ,求四边形 ABCD 的面积.

来源:2017年广西贺州市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 P 是弦 AC 上一动点(不与 A C 重合),过点 P PE AB ,垂足为 E ,射线 EP AC ̂ 于点 F ,交过点 C 的切线于点 D

(1)求证: DC = DP

(2)若 CAB = 30 ° ,当 F AC ̂ 的中点时,判断以 A O C F 为顶点的四边形是什么特殊四边形?说明理由.

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

(年蒙自市初中学业水平第一次模拟测试)已知垂直平分

(1)证明是平行四边形;
(2)若,求的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,矩形中,,点是对角线的中点,过点的直线分别交边于点

(1)求证:四边形是平行四边形;

(2)当时,求的长.

来源:2019年湖北省鄂州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在中,是斜边的中点,以为直径作圆于点,延长,使,连接交圆于点

(1)判断四边形的形状,并说明理由;

(2)求证:

(3)若,求的长.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,将沿着边翻折,得到,且

(1)判断四边形的形状,并说明理由;

(2)若,求四边形的面积.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 交于点 O ,且 DE / / AC AE / / BD ,连接 OE .求证: OE AD

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质解答题