如图, AB 是 ⊙ O 的直径,点 P 是弦 AC 上一动点(不与 A , C 重合),过点 P 作 PE ⊥ AB ,垂足为 E ,射线 EP 交 AC ̂ 于点 F ,交过点 C 的切线于点 D .
(1)求证: DC = DP ;
(2)若 ∠ CAB = 30 ° ,当 F 是 AC ̂ 的中点时,判断以 A , O , C , F 为顶点的四边形是什么特殊四边形?说明理由.
一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.
(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;
(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.
为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
如图1,在菱形 ABCD 中, AB = 6 5 , tan ∠ ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = ∠ BCD ) ,得到对应线段 CF .
(1)求证: BE = DF ;
(2)当 t = 秒时, DF 的长度有最小值,最小值等于 ;
(3)如图2,连接 BD 、 EF 、 BD 交 EC 、 EF 于点 P 、 Q ,当 t 为何值时, ΔEPQ 是直角三角形?
(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = ∠ BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.
如果三角形三边的长 a 、 b 、 c 满足 a + b + c 3 = b ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, … 的三角形都是“匀称三角形”.
(1)如图1,已知两条线段的长分别为 a 、 c ( a < c ) .用直尺和圆规作一个最短边、最长边的长分别为 a 、 c 的“匀称三角形”(不写作法,保留作图痕迹);
(2)如图2, ΔABC 中, AB = AC ,以 AB 为直径的 ⊙ O 交 BC 于点 D ,过点 D 作 ⊙ O 的切线交 AB 延长线于点 E ,交 AC 于点 F ,若 BE CF = 5 3 ,判断 ΔAEF 是否为“匀称三角形”?请说明理由.
如图1,一次函数 y = kx - 3 ( k ≠ 0 ) 的图象与 y 轴交于点 A ,与反比例函数 y = 4 x ( x > 0 ) 的图象交于点 B ( 4 , b ) .
(1) b = ; k = ;
(2)点 C 是线段 AB 上的动点(与点 A 、 B 不重合),过点 C 且平行于 y 轴的直线 l 交这个反比例函数的图象于点 D ,求 ΔOCD 面积的最大值;
(3)将(2)中面积取得最大值的 ΔOCD 沿射线 AB 方向平移一定的距离,得到△ O ' C ' D ' ,若点 O 的对应点 O ' 落在该反比例函数图象上(如图 2 ) ,则点 D ' 的坐标是 .