如图1,在菱形 ABCD 中, AB = 6 5 , tan ∠ ABC = 2 ,点 E 从点 D 出发,以每秒1个单位长度的速度沿着射线 DA 的方向匀速运动,设运动时间为 t (秒 ) ,将线段 CE 绕点 C 顺时针旋转一个角 α ( α = ∠ BCD ) ,得到对应线段 CF .
(1)求证: BE = DF ;
(2)当 t = 秒时, DF 的长度有最小值,最小值等于 ;
(3)如图2,连接 BD 、 EF 、 BD 交 EC 、 EF 于点 P 、 Q ,当 t 为何值时, ΔEPQ 是直角三角形?
(4)如图3,将线段 CD 绕点 C 顺时针旋转一个角 α ( α = ∠ BCD ) ,得到对应线段 CG .在点 E 的运动过程中,当它的对应点 F 位于直线 AD 上方时,直接写出点 F 到直线 AD 的距离 y 关于时间 t 的函数表达式.
某校开展以“迎新年”为主题的艺术活动,举办了四个项目的比赛.它们分别是:A演讲、B唱歌、C书法、D绘画.要求每位同学必须参加且限报一项.以九(一)班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题: (1)求出参加绘画比赛的学生人数占全班总人数的百分比; (2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数; (3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?
下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.
如图, 已知为直线上一点, 过点向直线上方引三条射线、、, 且平分,,,求的度数.
(每小题6分,共12分)解方程 (1)解方程: (2)先化简,再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中a=.
(每题6分,共12分)计算: (1) (2)+