如图1,一次函数 y = kx - 3 ( k ≠ 0 ) 的图象与 y 轴交于点 A ,与反比例函数 y = 4 x ( x > 0 ) 的图象交于点 B ( 4 , b ) .
(1) b = ; k = ;
(2)点 C 是线段 AB 上的动点(与点 A 、 B 不重合),过点 C 且平行于 y 轴的直线 l 交这个反比例函数的图象于点 D ,求 ΔOCD 面积的最大值;
(3)将(2)中面积取得最大值的 ΔOCD 沿射线 AB 方向平移一定的距离,得到△ O ' C ' D ' ,若点 O 的对应点 O ' 落在该反比例函数图象上(如图 2 ) ,则点 D ' 的坐标是 .
已知二次函数.(1)在给定的直角坐标系中,画出这个函数图象的示意图;(2)根据图象,写出当时的取值范围.
已知:如图,在Rt△ABC中,的正弦、余弦值.
(本小题满分8分) 已知抛物线y=ax2+bx+6与x轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OB=OC,tan∠ACO=,顶点为D.(1)求点A的坐标.(2)求直线CD与x轴的交点E的坐标.(3)在此抛物线上是否存在一点F,使得以点A、C、E、F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(4)若点M(2,y)是此抛物线上一点,点N是直线AM上方的抛物线上一动点,当点N运动到什么位置时,四边形ABMN的面积S最大? 请求出此时S的最大值和点N的坐标.(5)点P为此抛物线对称轴上一动点,若以点P为圆心的圆与(4)中的直线AM及x轴同时相切,则此时点P的坐标为.
(本小题满分8分) 已知,在△ABC中,∠BAC=90°,AB=AC,BC=,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图②,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.
(本小题满分6分) 如图,在△ABC中,∠ACB=90°,O为BC边上一点,以O为圆心,OB为半径作半圆与AB边和BC边分别交于点D、点E,连接CD,且CD=CA,BD=,tan∠ADC=2.(1)求证:CD是半圆O的切线(2)求半圆O的直径;(3)求AD的长.