一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.
(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;
(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.
如图,线段、相交于点,,.求证:.
如图,点、在数轴上,它们对应的数分别为,,且点、到原点的距离相等.求的值.
计算:.
如图,直线与轴,轴分别交于,两点,过,两点的抛物线与轴交于点.
(1)求抛物线的解析式;
(2)连接,若点是线段上的一个动点(不与,重合),过点作,交于点,当的面积是时,求点的坐标;
(3)在(2)的结论下,将绕点旋转得△,试判断点是否在抛物线上,并说明理由.
如图,是的直径,点是延长线上一点,过点作的切线,切点是,过点作弦于,连接,.
(1)求证:是的切线;
(2)若,,求的长;
(3)试探究线段,,之间的数量关系,并说明理由.