九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆CD的水平距离,求旗杆的高度.
水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y毫米. (1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x小. ①求y与x小的函数关系式(不必写出x小的范围); ②限定水面高不超过260毫米,最多放入几个小球?
嘉淇同学要证明命“两相对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证. 已知:如图,在四边形ABCD中, BC=AD, AB=____. 求证:四边形ABCD是____四过形. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明: 证明: (3)用文宇叙述所证命题的逆命题为____________________.
老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1. (1)求所捂的二次三项式: (2)若,求所捂二次三项式的值.
如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形.抛物线经过点A、C、A′三点. (1)求A、A′、C三点的坐标; (2)求平行四边形和平行四边形重叠部分的面积; (3)点M是第一象限内抛物线上的一动点,问点M在何处时,的面积最大?最大面积是多少?并写出此时M的坐标.
求不等式的解集. 解:根据“同号两数相乘,积为正”可得:①或 ②. 解①得;解②得. ∴不等式的解集为或. 请你仿照上述方法解决下列问题: (1)求不等式的解集. (2)求不等式的解集.