初中数学

实验探究:

(1)如图1,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开;再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN MN .请你观察图1,猜想 MBN 的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片 BMN 剪下,如图2.折叠该纸片,探究 MN BM 的数量关系.写出折叠方案,并结合方案证明你的结论.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 10 B = 60 ° ,点 D E 分别在 AB BC 上,且 BD = BE = 4 ,将 ΔBDE 沿 DE 所在直线折叠得到△ B ' DE (点 B ' 在四边形 ADEC 内),连接 AB ' ,则 AB ' 的长为       

来源:2016年江苏省苏州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

小颖在学习“两点之间线段最短”查阅资料时发现: ΔABC 内总存在一点 P 与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.

【特例】如图1,点 P 为等边 ΔABC 的中心,将 ΔACP 绕点 A 逆时针旋转 60 ° 得到 ΔADE ,从而有 DE = PC ,连接 PD 得到 PD = PA ,同时 APB + APD = 120 ° + 60 ° = 180 ° ADP + ADE = 180 ° ,即 B P D E 四点共线,故 PA + PB + PC = PD + PB + DE = BE .在 ΔABC 中,另取一点 P ' ,易知点 P ' 与三个顶点连线的夹角不相等,可证明 B P ' D ' E 四点不共线,所以 P ' A + P ' B + P ' C > PA + PB + PC ,即点 P 到三个顶点距离之和最小.

【探究】(1)如图2, P ΔABC 内一点, APB = BPC = 120 ° ,证明 PA + PB + PC 的值最小;

【拓展】(2)如图3, ΔABC 中, AC = 6 BC = 8 ACB = 30 ° ,且点 P ΔABC 内一点,求点 P 到三个顶点的距离之和的最小值.

来源:2016年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系, O 为坐标原点,点 A ( 1 , 0 ) ,点 B ( 0 , 3 )

(1)求 BAO 的度数;

(2)如图1,将 ΔAOB 绕点 O 顺时针旋转得△ A ' OB ' ,当 A ' 恰好落在 AB 边上时,设△ AB ' O 的面积为 S 1 ,△ BA ' O 的面积为 S 2 S 1 S 2 有何关系?为什么?

(3)若将 ΔAOB 绕点 O 顺时针旋转到如图2所示的位置, S 1 S 2 的关系发生变化了吗?证明你的判断.

来源:2017年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,点 E 是矩形 ABCD 的边 BC 上的点, BE = 2 CE ,将矩形沿着过点 E 的直线翻折后,点 C D 分别落在边 BC 下方的点 C 1 D 1 处,且点 C 1 D 1 B 在同一条直线上,折痕与边 AD 交于点 F D 1 F BE 交于点 G .若 AB = 3 ,那么 ΔEFG 的周长为 (    )

A. 4 3 B. 2 + 2 3 C. 9 3 2 D.6

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知:如图, AM O 的切线, A 为切点,过 O 上一点 B BD AM 于点 D BD O 于点 C OC 平分 AOB

(1)求 AOB 的度数;

(2)当 O 的半径为 2 cm ,求 CD 的长.

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AC = BC = 2 ,将 ΔABC 绕点 A 顺时针方向旋转 60 ° 到△ AB ' C ' 的位置,连接 C ' B ,则 C ' B =          

来源:2016年山东省枣庄市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, A P B C 是圆上的四个点, APC = CPB = 60 ° AP CB 的延长线相交于点 D

(1)求证: ΔABC 是等边三角形;

(2)若 PAC = 90 ° AB = 2 3 ,求 PD 的长.

来源:2016年山东省临沂市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,将 ΔADC 沿 AC 折叠后,点 D 恰好落在 DC 的延长线上的点 E 处.若 B = 60 ° AB = 3 ,则 ΔADE 的周长为 (    )

A.

12

B.

15

C.

18

D.

21

来源:2019年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

ΔABC ΔADE 中, BA = BC DA = DE .且 ABC = ADE = α ,点 E ΔABC 的内部,连接 EC EB BD ,并且 ACE + ABE = 90 °

(1)如图①,当 α = 60 ° 时,线段 BD CE 的数量关系为  ,线段 EA EB EC 的数量关系为  

(2)如图②,当 α = 90 ° 时,请写出线段 EA EB EC 的数量关系,并说明理由;

(3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC = 2 5 ,请直接写出 ΔBDE 的面积.

来源:2018年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 D 在线段 AB 上,以 AD 为直径的 O BC 相交于点 E ,与 AC 相交于点 F B = BAE = 30 °

(1)求证: BC O 的切线;

(2)若 AC = 3 ,求 O 的半径 r

(3)在(1)的条件下,判断以 A O E F 为顶点的四边形为哪种特殊四边形,并说明理由.

来源:2018年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,将边长为6的正三角形纸片 ABC 按如下顺序进行两次折叠,展平后,得折痕 AD BE (如图①),点 O 为其交点.

(1)探求 AO OD 的数量关系,并说明理由;

(2)如图②,若 P N 分别为 BE BC 上的动点.

①当 PN + PD 的长度取得最小值时,求 BP 的长度;

②如图③,若点 Q 在线段 BO 上, BQ = 1 ,则 QN + NP + PD 的最小值 =       

来源:2017年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,菱形 OABC 的顶点 A B C O 上,过点 B O 的切线交 OA 的延长线于点 D .若 O 的半径为1,则 BD 的长为 (    )

A.1B.2C. 2 D. 3

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学等边三角形的判定与性质试题