在 ΔABC 和 ΔADE 中, BA = BC , DA = DE .且 ∠ ABC = ∠ ADE = α ,点 E 在 ΔABC 的内部,连接 EC , EB 和 BD ,并且 ∠ ACE + ∠ ABE = 90 ° .
(1)如图①,当 α = 60 ° 时,线段 BD 与 CE 的数量关系为 ,线段 EA , EB , EC 的数量关系为 ;
(2)如图②,当 α = 90 ° 时,请写出线段 EA , EB , EC 的数量关系,并说明理由;
(3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC = 2 5 ,请直接写出 ΔBDE 的面积.
如图7,已知AB、AC分别为⊙O的直径和弦,D为⌒BC的中点,DE⊥AC于E,DE=6,AC=16.求证:DE是⊙O的切线.求直径AB的长.
一条船在海面上自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100米到达B处,又测得航标C在北偏东45°方向上.请根据以上描述,画出图形.已知以航标C为圆心,120米为半径的圆形区域内有浅滩, 若这条船继续前进,是否有被浅滩阻碍的危险?为什么?
某班同学到离校24千米的农场参观,一部分骑自行车的同学先走,1小时后,没有自行车的同学乘汽车出发,结果他们同时到达农场,已知汽车速度是自行车速度的3倍,求两种车的速度.
初三级一位学生对本班同学的上学方式进行了一次调查统计,图5①和图5②是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:该班共有多少名学生?在图5①中将表示“骑车”的部分补充完整.在扇形统计图中,“步行”部分对应的圆心角的度数是多少?如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.
如图4,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.