在 ΔABC 和 ΔADE 中, BA = BC , DA = DE .且 ∠ ABC = ∠ ADE = α ,点 E 在 ΔABC 的内部,连接 EC , EB 和 BD ,并且 ∠ ACE + ∠ ABE = 90 ° .
(1)如图①,当 α = 60 ° 时,线段 BD 与 CE 的数量关系为 ,线段 EA , EB , EC 的数量关系为 ;
(2)如图②,当 α = 90 ° 时,请写出线段 EA , EB , EC 的数量关系,并说明理由;
(3)在(2)的条件下,当点 E 在线段 CD 上时,若 BC = 2 5 ,请直接写出 ΔBDE 的面积.
如图,AC与BD相交于点O,AO=DO,,求证:.
如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方 向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm/s和1cm/s.FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t(s)(0<t<4). (1)连结EF、DQ,若四边形EQDF为平行四边形,求t的值; (2)连结EP,设△EPC的面积为ycm2,求y与t的函数关系式,并求y的最大值;
如图,AB为半圆O的直径,点C在半圆上,CD⊥AB于点D, 连结BC,作∠BCP=∠BCD,CP交AB延长线于点P. (1)求证:PC是半圆O的切线; (2)求证:PC2=PB•PA; (3)若PC=2,tan∠BCD=,求的长.
如图,抛物线与轴交于A(﹣2,0),B(6,0)两点. (1)求该抛物线的解析式; (2)求该抛物线的对称轴以及顶点坐标; (3)点P为y轴右侧抛物线上一个动点,若S△PAB=32, 求出此时P点的坐标.
如图,正方形ABCD中,点F在AD上,点E在AB的延长线上,∠FCE=90°. (1)求证:△CDF≌△CBE. (2)若CD=8.EF=10.求∠DCF的余弦值.