如图,已知BD∥CE.(1)若∠C=70°,则∠DBC=______°;(2)若∠C=∠D,则AC∥DF.请阅读下面的说理过程,并填写适当的理由或数学式.解:∵BD∥CE(已知),∴∠1=∠C( ),又∵∠C=∠D(已知),∴∠1= (等量代换),∴AC∥DF( ).
为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.(1)(4分)运用列表或画树状图求甲得1分的概率;(2)(3分)这个游戏是否公平?请说明理由.
先化简,再求值:,其中a是方程x2-x=6的根.
二次函数y=﹣x2+2x+m的图象与x轴交于A.B两点(B在A右侧),顶点为C,且A.B两点间的距离等于点C到x轴的距离的2倍.(1)求此抛物线的解析式.(2)求直线BC的解析式.(3)若点P在抛物线的对称轴上,且⊙P与x轴以及直线BC都相切,求点P的坐标.【提示:(+1)(-1)=1】
如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于D,C在⊙O上,PC=PD.(1)求证:PC是⊙O的切线.(2)连接AC,若AC=PC,PB=1,求⊙O的半径.
已知关于x的方程x2-4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx+1=0有相同的根,求此时m的值.