如图,在 Rt Δ ABC 中, ∠ C = 90 ° ,点 D 在线段 AB 上,以 AD 为直径的 ⊙ O 与 BC 相交于点 E ,与 AC 相交于点 F , ∠ B = ∠ BAE = 30 ° .
(1)求证: BC 是 ⊙ O 的切线;
(2)若 AC = 3 ,求 ⊙ O 的半径 r ;
(3)在(1)的条件下,判断以 A 、 O 、 E 、 F 为顶点的四边形为哪种特殊四边形,并说明理由.
(本题满分8分)先化简再求值:,其中.
(本题满分8分,每小题各4分)(1)解方程:(2)计算:
如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4).⑴求抛物线解析式及顶点坐标;⑵设点E(x,y)是抛物线第四象限上一动点,四边形OEAF是以OA为对角线的平行四边形,求OEAF的面积S与x之间的函数关系式,并求出自变量的取值范围;⑶若S=24,试判断OEAF是否为菱形。⑷若点E在⑴中的抛物线上,点F在对称轴上,以O、E、A、F为顶点的四边形能否为平行四边形,若能,求出点E、F的坐标;若不能,请说明理由。(第⑷问不写解答过程,只写结论)
某学校规定,该学校教师的每人每月用电量不超过A度,那么这个月只需交10元电费,如果超过A度,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费.⑴胡教师12月份用电90度,超过了规定的A度,则超过的部分应交电费多少元?(用含A的代数式表示)⑵下面是该教师10月、11月的用电情况和交费情况:
根据上表数据,求A值,并计算该教师12月份应交电费多少元?
如图以O为圆心的两个同心圆,AB经过圆心O,且与小圆相交于点A,与大圆相交于点B,小圆的切线AC与大圆相交于点D,且OC平分∠ACB.⑴试判断BC所在的直线与小圆的位置关系,并说明理由;⑵试判断线段AC、AD、BC之间的数量关系,并说明理由;⑶若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积(结果保留π).