我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△是的“旋补三角形”,△ 边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△是的“旋补三角形”, 是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为 ;
②如图3,当,时,则长为 .
猜想论证:
(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形,,,,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图1,,分别在射线,上,且为钝角,现以线段,为斜边向的外侧作等腰直角三角形,分别是,,点,,分别是,,的中点.
(1)求证:;
(2)延长,交于点.
①如图2,若,求证:为等边三角形;
②如图3,若,求大小和的值.
如图1, 是边长为 的等边三角形,边 在射线 上,且 ,点 从 点出发,沿 的方向以 的速度运动,当 不与点 重合时,将 绕点 逆时针方向旋转 得到 ,连接 .
(1)求证: 是等边三角形;
(2)如图2,当 时, 的周长是否存在最小值?若存在,求出 的最小周长;若不存在,请说明理由;
(3)如图3,当点 在射线 上运动时,是否存在以 、 、 为顶点的三角形是直角三角形?若存在,求出此时 的值;若不存在,请说明理由.
问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC.
(1)填空:∠ OBC= °;
(2)如图1,连接 AC,作 OP⊥ AC,垂足为 P,求 OP的长度;
(3)如图2,点 M, N同时从点 O出发,在△ OCB边上运动, M沿 O→ C→ B路径匀速运动, N沿 O→ B→ C路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?
发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.
如图1,在平面直角坐标系, 为坐标原点,点 ,点 .
(1)求 的度数;
(2)如图1,将 绕点 顺时针旋转得△ ,当 恰好落在 边上时,设△ 的面积为 ,△ 的面积为 , 与 有何关系?为什么?
(3)若将 绕点 顺时针旋转到如图2所示的位置, 与 的关系发生变化了吗?证明你的判断.
如图,四边形 内接于圆, ,对角线 平分 .
(1)求证: 是等边三角形;
(2)过点 作 交 的延长线于点 ,若 , ,求 的面积.
如图,四边形 中, , , ,连接 ,以点 为圆心, 长为半径作 ,交 于点 .
(1)试判断 与 的位置关系,并说明理由;
(2)若 , ,求图中阴影部分的面积.
已知在 中, , 是 边上的一点,将 沿着过点 的直线折叠,使点 落在 边的点 处(不与点 , 重合),折痕交 边于点 .
(1)特例感知 如图1,若 , 是 的中点,求证: ;
(2)变式求异 如图2,若 , , ,过点 作 于点 ,求 和 的长;
(3)化归探究 如图3,若 , ,且当 时,存在两次不同的折叠,使点 落在 边上两个不同的位置,请直接写出 的取值范围.
如图1, 是半圆 的直径, 是一条弦, 是 上一点, 于点 ,交 于点 ,连结 交 于点 ,且 .
(1)求证:点 平分 ;
(2)如图2所示,延长 至点 ,使 ,连结 .若点 是线段 的中点.求证: 是 的切线.
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,四边形 为矩形, 是对角线 的中点.连接 并延长至 ,使 ,以 , 为邻边作菱形 ,连接 .
(1)判断四边形 的形状,并证明你的结论.
(2)连接 ,若 ,求 的长.
问题背景:如图1,等腰 中, , ,作 于点 ,则 为 的中点, ,于是 ;
迁移应用:如图2, 和 都是等腰三角形, , , , 三点在同一条直线上,连接 .
①求证: ;
②请直接写出线段 , , 之间的等量关系式;
拓展延伸:如图3,在菱形 中, ,在 内作射线 ,作点 关于 的对称点 ,连接 并延长交 于点 ,连接 , .
①证明 是等边三角形;
②若 , ,求 的长.