如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D 从 O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE .
(1)求证: ΔCDE 是等边三角形;
(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;
(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D 、 E 、 B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.
如图所示,在△ABC中,AB=BC=12 cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC. (1)求∠EDB的度数; (2)求DE的长.
已知关于的方程, (1)若该方程的一个根为1,求的值及该方程的另一根; (2)求证:不论取何实数,该方程都有两个不相等的实数根.
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点). (1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1; (2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
已知、是方程的两实数根,求的值.
(本题每小题4分,满分8分) (1) (2)