如图,四边形 ABCD 内接于圆, ∠ ABC = 60 ° ,对角线 BD 平分 ∠ ADC .
(1)求证: ΔABC 是等边三角形;
(2)过点 B 作 BE / / CD 交 DA 的延长线于点 E ,若 AD = 2 , DC = 3 ,求 ΔBDE 的面积.
求满足式子的x的值.
已知,求的值。
如图,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD。求证:OC=OD。
如图,已知⊙O的半径为8cm,点A为半径OB的延长线上一点,射线AC切⊙O于点C,BC的长为,求线段AB的长。
如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD。