如图,四边形 ABCD 内接于圆, ∠ ABC = 60 ° ,对角线 BD 平分 ∠ ADC .
(1)求证: ΔABC 是等边三角形;
(2)过点 B 作 BE / / CD 交 DA 的延长线于点 E ,若 AD = 2 , DC = 3 ,求 ΔBDE 的面积.
如图,在由边长为1的小正方形组成的网格中,三角形ABC的顶点均落在格点上. (1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1; (2)求线段OA在旋转过程中扫过的图形面积;(结果保留) (3)求∠BCC1的正切值.
小刚与小强学习概率初步知识后设计了如下游戏:小刚手中有方块l0、8、6三张扑克牌,小强手中有方块9、7、5三张扑克牌.每人从各自手中取一张牌进行比较,数字大的为本“局”获胜,每次取的牌不能放回. (1)若每人随机取手中的一张牌进行比赛,通过列表格或画树状图求小强本“局”获胜的概率; (2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小刚的三张牌出牌顺序为先出6,再出8,最后出l0时,小强随机出牌应对,求小强本次比赛获胜的概率.
先化简,再求值:,其中x是不等式组的一个整数解.
如图,抛物线与坐标轴相交于、、三点,是线段上一动点(端点除外),过作,交于点,连接. (1)直接写出、、的坐标; (2)求抛物线的对称轴和顶点坐标; (3)求面积的最大值,并判断当的面积取最大值时,以、为邻边的平行四边形是否为菱形.
如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E. (1)求证:点D是AB的中点; (2)判断DE与⊙O的位置关系,并证明你的结论; (3)若⊙O的直径为18,cosB=,求DE的长.