在矩形 中,点 在 上, , ,垂足为 .
(1)求证: ;
(2)若 ,且 ,求 .
已知,在 中,点 在 上,点 是 延长线上一点,且 ,连接 交 于点 .
(1)猜想证明:如图1,在 中,若 ,学生们发现: .下面是两位学生的证明思路:
思路1:过点 作 ,交 于点 ,可证 得出结论;
思路2:过点 作 ,交 的延长线于点 ,可证 得出结论;
请你参考上面的思路,证明 (只用一种方法证明即可).
(2)类比探究:在(1)的条件下(如图 ,过点 作 于点 ,试探究线段 , , 之间满足的数量关系,并证明你的结论.
(3)延伸拓展:如图2,在 中,若 , , ,请你用尺规作图在图2中作出 的垂直平分线交 于点 (不写作法,只保留作图痕迹),并用含 的代数式直接表示 的值.
定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图1,等腰直角四边形 , , ,
①若 , ,求对角线 的长.
②若 ,求证: ,
(2)如图2,在矩形 中, , ,点 是对角线 上一点,且 ,过点 作直线分别交边 , 于点 , ,使四边形 是等腰直角四边形,求 的长.
如图,一次函数 的图象交 轴于点 、交 轴于点 , 的平分线交 轴于点 ,过点 作直线 ,垂足为点 ,交 轴于点 .
(1)求直线 的解析式;
(2)在线段 上有一动点 (不与点 , 重合),过点 分别作 轴, 轴,垂足为点 、 ,是否存在点 ,使线段 的长最小?若存在,请直接写出点 的坐标;若不存在,请说明理由.
已知在 中, , 为 的平分线,将 沿 所在的直线对折,使点 落在点 处,连接 , ,延长 交 于点 ,设 .
(1)如图1,若 ,求证: ;
(2)如图2,若 ,试求 与 的数量关系(用含 的式子表示);
(3)如图3,将(2)中的线段 绕点 逆时针旋转角 ,得到线段 ,连接 交 于点 ,设 的面积为 , 的面积为 ,求 (用含 的式子表示).
如图, 中, , 垂直平分 ,交线段 于点 (点 与点 不重合),点 为 上一点,点 为 上一点(点 与点 不重合),且 .
(1)如图1,当 时,线段 和 的数量关系是 .
(2)如图2,当 时,猜想线段 和 的数量关系,并加以证明.
(3)若 , , ,请直接写出 的长.
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图,在 中, , 于点 , 于点 , 与 交于点 , 于点 ,点 是 的中点,连接 并延长交 于点 .
(1)如图①所示,若 ,求证: ;
(2)如图②所示,若 ,如图③所示,若 (点 与点 重合),猜想线段 、 与 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图, 是正方形 的对角线,线段 在其所在的直线上平移,将平移得到的线段记为 ,连接 ,过点 作 ,垂足为 ,连接 、 .
(1)如图①所示,求证: ;
(2)如图②所示, 在 的延长线上,如图③所示, 在 的反向延长线上,猜想线段 、 之间有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,矩形 中,延长 至 ,延长 至 , ,连接 ,与 、 分别相交于 、 两点.
(1)求证: ;
(2)若 , , ,求矩形 的面积.
如图,矩形 中,延长 至 ,延长 至 , ,连接 ,与 、 分别相交于 、 两点.
(1)求证: ;
(2)若 , , ,求矩形 的面积.
如图, 是 的直径, , 是 的中点,连接 并延长到点 ,使 .连接 交 于点 ,连接 , .
(1)求证:直线 是 的切线;
(2)若 ,求 的长.
如图,四边形 是正方形,连接 ,将 绕点 逆时针旋转 得 ,连接 , 为 的中点,连接 , .
(1)如图1,当 时,请直接写出 与 的关系(不用证明).
(2)如图2,当 时,(1)中的结论是否成立?请说明理由.
(3)当 时,若 ,请直接写出点 经过的路径长.