在矩形 ABCD 中,点 E 在 BC 上, AE = AD , DF ⊥ AE ,垂足为 F .
(1)求证: DF = AB ;
(2)若 ∠ FDC = 30 ° ,且 AB = 4 ,求 AD .
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AC=13,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:CB是∠ECA的角平分线;(2)求DE的长;(3)求证:BE是⊙O的切线.
长江汽车销售公司11月份销售奇瑞牌汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,该部汽车的进价为27万元,每多售出1部,则所有售出的汽车的进价均降低0.1万元/部。月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元。 (1)若该公司当月售出3部汽车,则每部汽车的进价为 万元; (2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车(盈利=销售利润+返利)?
如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°.(1)求∠BAC的度数;(2)当BC=4时,求劣弧AC的长.
如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,)的位置,B旋转到点B′位置(1)求B′点坐标.(2)求阴影部分面积。
在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=-x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.