如图,点 E , F 分别在正方形 ABCD 的边 CD , BC 上,且 DE = CF ,点 P 在射线 BC 上(点 P 不与点 F 重合).将线段 EP 绕点 E 顺时针旋转 90 ° 得到线段 EG ,过点 E 作 GD 的垂线 QH ,垂足为点 H ,交射线 BC 于点 Q .
(1)如图1,若点 E 是 CD 的中点,点 P 在线段 BF 上,线段 BP , QC , EC 的数量关系为 .
(2)如图2,若点 E 不是 CD 的中点,点 P 在线段 BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)正方形 ABCD 的边长为6, AB = 3 DE , QC = 1 ,请直接写出线段 BP 的长.
先化简,再求值:,其中a=-1,b=.
(1)计算:(-1)2011+(-3)0+;(2)解方程:(-4)=5.
如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM= _________ 厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.
某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比;(2)求本次抽查的中学生人数;(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.
先化简,再求值:(﹣)÷,其中x=+1.