如图,把 沿 翻折得 .
(1)连接 ,则 与 的位置关系是 .
(2)不在原图中添加字母和线段,只加一个条件使四边形 是平行四边形,写出添加的条件,并说明理由.
如图,在 中,以点 为圆心, 长为半径画弧交 于点 ,再分别以点 、 为圆心,大于 的相同长为半径画弧,两弧交于点 ;连接 并延长交 于点 ,连接 ,则所得四边形 是菱形.
(1)根据以上尺规作图的过程,求证:四边形 是菱形;
(2)若菱形 的周长为16, ,求 的大小.
如图①, ,延长 , 相交于点 .
(1)求证: ;
(2)将两个三角形绕点 旋转,当 时(如图② ,连接 、 .取 的中点 ,连接 ,则线段 、 的数量关系为 ,位置关系为 ;
(3)将图②中的线段 , 同时绕点 顺时针方向旋转到图③所示位置,连接 、 ,取 的中点 ,连接 ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.
如图,在 中, 为 上一点,以点 为圆心, 为半径做圆,与 相切于点 ,过点 作 交 的延长线于点 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
已知: 是等边三角形,点 在直线 上,连接 ,以 为边作等边三角形 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 、 、 .
(1)如图1,当点 在线段 上时,求证: ;
(2)如图1,当点 在线段 上时,求证:四边形 是平行四边形;
(3)如图2,当点 在线段 延长线上时,四边形 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图,在 中, , 于点 , 于点 , 与 交于点 , 于点 ,点 是 的中点,连接 并延长交 于点 .
(1)如图①所示,若 ,求证: ;
(2)如图②所示,若 ,如图③所示,若 (点 与点 重合),猜想线段 、 与 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图, 是正方形 的对角线,线段 在其所在的直线上平移,将平移得到的线段记为 ,连接 ,过点 作 ,垂足为 ,连接 、 .
(1)如图①所示,求证: ;
(2)如图②所示, 在 的延长线上,如图③所示, 在 的反向延长线上,猜想线段 、 之间有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,在矩形 中, 是 的中点,连接 、 .
(1)求证: ;
(2)若 , ,求 的周长.
如图1,在矩形 中, 是 的中点,以点 为直角顶点的直角三角形 的两边 , 分别过点 , , .
(1)求证: ;
(2)将 绕点 按顺时针方向旋转,当旋转到 与 重合时停止转动,若 , 分别与 , 相交于点 , (如图 .
①求证: ;
②若 ,求 面积的最大值;
③当旋转停止时,点 恰好在 上(如图 ,求 的值.
如图, 中, , 垂直平分 ,交线段 于点 (点 与点 不重合),点 为 上一点,点 为 上一点(点 与点 不重合),且 .
(1)如图1,当 时,线段 和 的数量关系是 .
(2)如图2,当 时,猜想线段 和 的数量关系,并加以证明.
(3)若 , , ,请直接写出 的长.
已知: 和 均为等边三角形,连接 , ,点 , , 分别为 , , 中点.
(1)当 绕点 旋转时,如图1,则 的形状为 ,说明理由;
(2)在 旋转的过程中,当 , , 三点共线时,如图2,若 , ,求线段 的长;
(3)在 旋转的过程中,若 , ,则 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.