初中数学

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.

(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;

(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 C 的大小.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,点 E F BC 上, BE = CF AB = DC B = C ,求证: AF = DE

来源:2019年辽宁省大连市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

如图①, ΔAOB ΔCOD ,延长 AB CD 相交于点 E

(1)求证: DE = BE

(2)将两个三角形绕点 O 旋转,当 AEC = 90 ° 时(如图② ) ,连接 BC AD .取 BC 的中点 F ,连接 EF ,则线段 EF AD 的数量关系为  ,位置关系为  

(3)将图②中的线段 EB ED 同时绕点 E 顺时针方向旋转到图③所示位置,连接 AD BC ,取 BC 的中点 F ,连接 EF ,请你判断(2)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, O AC 上一点,以点 O 为圆心, OC 为半径做圆,与 BC 相切于点 C ,过点 A AD BO BO 的延长线于点 D ,且 AOD = BAD

(1)求证: AB O 的切线;

(2)若 BC = 6 tan ABC = 4 3 ,求 AD 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等边三角形,点 E 在直线 AC 上,连接 BE ,以 BE 为边作等边三角形 BEF ,将线段 CE 绕点 C 顺时针旋转 60 ° ,得到线段 CD ,连接 AF AD ED

(1)如图1,当点 E 在线段 AC 上时,求证: ΔBCE ΔACD

(2)如图1,当点 E 在线段 AC 上时,求证:四边形 ADEF 是平行四边形;

(3)如图2,当点 E 在线段 AC 延长线上时,四边形 ADEF 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.

来源:2016年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AC BAE 的平分线,点 D 是线段 AC 上的一点, C = E AB = AD .求证: BC = DE

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC AD BC 于点 D BE AC 于点 E AD BE 交于点 F BH AB 于点 B ,点 M BC 的中点,连接 FM 并延长交 BH 于点 H

(1)如图①所示,若 ABC = 30 ° ,求证: DF + BH = 3 3 BD

(2)如图②所示,若 ABC = 45 ° ,如图③所示,若 ABC = 60 ° (点 M 与点 D 重合),猜想线段 DF BH BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的对角线,线段 BC 在其所在的直线上平移,将平移得到的线段记为 PQ ,连接 PA ,过点 Q QO BD ,垂足为 O ,连接 OA OP

(1)如图①所示,求证: AP = 2 OA

(2)如图②所示, PQ BC 的延长线上,如图③所示, PQ BC 的反向延长线上,猜想线段 AP OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 的中点,连接 DE CE

(1)求证: ΔADE ΔBCE

(2)若 AB = 6 AD = 4 ,求 ΔCDE 的周长.

来源:2018年湖南省湘西州中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, E AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF EG 分别过点 B C F = 30 °

(1)求证: BE = CE

(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF AD 重合时停止转动,若 EF EG 分别与 AB BC 相交于点 M N (如图 2 )

①求证: ΔBEM ΔCEN

②若 AB = 2 ,求 ΔBMN 面积的最大值;

③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin EBG 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC DE 垂直平分 AB ,交线段 BC 于点 E (点 E 与点 C 不重合),点 F AC 上一点,点 G AB 上一点(点 G 与点 A 不重合),且 GEF + BAC = 180 °

(1)如图1,当 B = 45 ° 时,线段 AG CF 的数量关系是  

(2)如图2,当 B = 30 ° 时,猜想线段 AG CF 的数量关系,并加以证明.

(3)若 AB = 6 DG = 1 cos B = 3 4 ,请直接写出 CF 的长.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° ,点 O AB 中点,点 P 为直线 BC 上的动点(不与点 B 、点 C 重合),连接 OC OP ,将线段 OP 绕点 P 顺时针旋转 60 ° ,得到线段 PQ ,连接 BQ

(1)如图1,当点 P 在线段 BC 上时,请直接写出线段 BQ CP 的数量关系.

(2)如图2,当点 P CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;

(3)如图3,当点 P BC 延长线上时,若 BPO = 15 ° BP = 4 ,请求出 BQ 的长

来源:2017年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题