如图1,在矩形 ABCD 中, E 是 AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF , EG 分别过点 B , C , ∠ F = 30 ° .
(1)求证: BE = CE ;
(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF 与 AD 重合时停止转动,若 EF , EG 分别与 AB , BC 相交于点 M , N (如图 2 ) .
①求证: ΔBEM ≅ ΔCEN ;
②若 AB = 2 ,求 ΔBMN 面积的最大值;
③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin ∠ EBG 的值.
解下列不等式及不等式组:(本题共8分,每题3分,数轴2分) (1) 2-4x<0 (2)解不等式组,并把解集在数轴上表示出来。
如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动. (1)如果,求点运动的时间; (2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元. (1)改造一所类学校和一所类学校所需的资金分别是多少万元? (2)若该县的类学校不超过5所,则类学校至少有多少所? (3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
某足球协会举办了一次足球联赛,记分规则是:胜一场得3分,平一场得1分,负一场得0分.当比赛进行到12轮结束(每队均需比赛12场)时,甲队得分是19分,请你通过计算分析甲队胜几场、平几场、负几场?
学校计划用地面砖铺设教学楼前矩形广场的地面已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖. (1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?