已知正方形 与正方形 ,正方形 绕点 旋转一周.
(1)如图①,连接 、 ,求 的值;
(2)当正方形 旋转至图②位置时,连接 、 ,分别取 、 的中点 、 ,连接 、试探究: 与 的关系,并说明理由;
(3)连接 、 ,分别取 、 的中点 、 ,连接 , ,请直接写出线段 扫过的面积.
如图1,在 中,矩形 的一边 在 上,顶点 、 分别在 、 上, 是边 上的高, 交 于点 .若 , , .矩形 恰好为正方形.
(1)求正方形 的边长;
(2)如图2,延长 至 .使得 ,将矩形 沿 的方向向右平移,当点 刚好落在 上时,试判断移动后的矩形与 重叠部分的形状是三角形还是四边形,为什么?
(3)如图3,连接 ,将正方形 绕点 顺时针旋转一定的角度得到正方形 ,正方形 分别与线段 、 相交于点 、 ,求 的周长.
已知:如图,四边形 , , , , , ,动点 从点 开始沿 边匀速运动,动点 从点 开始沿 边匀速运动,它们的运动速度均为 .点 和点 同时出发,以 、 为边作平行四边形 ,设运动的时间为 , .
根据题意解答下列问题:
(1)用含 的代数式表示 ;
(2)设四边形 的面积为 ,求 与 的函数关系式;
(3)当 时,求 的值;
(4)在运动过程中,是否存在某一时刻 ,使点 在 的平分线上?若存在,求出 的值;若不存在,请说明理由.
已知正方形 中 与 交于 点,点 在线段 上,作直线 交直线 于 ,过 作 于 ,设直线 交 于 .
(1)如图1,当 在线段 上时,求证: ;
(2)如图2,当 在线段 上,连接 ,当 时,求证: ;
(3)在图3,当 在线段 上,连接 ,当 时,求证: .
已知:在平面直角坐标系中,点 为坐标原点,点 在 轴的负半轴上,直线 与 轴、 轴分别交于 、 两点,四边形 为菱形.
(1)如图1,求点 的坐标;
(2)如图2,连接 ,点 为 内一点,连接 、 , 与 交于点 ,且 ,点 在线段 上,点 在线段 上,且 ,连接 、 ,若 ,求 的值;
(3)如图3,在(2)的条件下,当 时,求点 的坐标.
如图,直线 与函数 的图象相交于 、 两点,与 轴相交于 点,过 、 两点作 轴的垂线,垂足分别为 、 ,过 、 两点作 轴的垂线,垂足分别为 、 ;直线 与 相交于点 ,连接 .设 、 两点的坐标分别为 、 ,其中 .
(1)如图①,求证: ;
(2)如图②,若 、 、 、 四点在同一圆周上,求 的值;
(3)如图③,已知 ,且点 在直线 上,试问:在线段 上是否存在点 ,使得 ?如存在,请求出点 的坐标;若不存在,请说明理由.
已知点 是正方形 对角线 的中点.
(1)如图1,若点 是 的中点,点 是 上一点,且使得 ,过点 作 ,交 于点 ,交 于点 .求证:
① ; ②点 是 的中点;
(2)如图2,若点 是 上一点,点 是 上一点,且使 ,请判断 的形状,并说明理由;
(3)如图3,若 是 上的动点(不与 , 重合),连接 ,过 点作 ,交 于点 ,当 时,请猜想 的值(请直接写出结论).
如图,矩形 中,点 为 上一点, 为 的中点,且 .
(1)当 为 中点时,求证: ;
(2)当 时,求 的值;
(3)设 , ,作点 关于 的对称点 ,连接 , ,若点 到 的距离是 ,求 的值.
如图①,在平面直角坐标系中,已知,,,四点,动点以每秒个单位长度的速度沿运动不与点、点重合),设运动时间为(秒.
(1)求经过、、三点的抛物线的解析式;
(2)点在(1)中的抛物线上,当为的中点时,若,求点的坐标;
(3)当在上运动时,如图②.过点作轴,垂足为,,垂足为.设矩形与重叠部分的面积为,求与的函数关系式,并求出的最大值;
(4)点为轴上一点,直线与直线交于点,与轴交于点.是否存在点,使得为等腰三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
已知抛物线经过点和,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点,分别在线段,上点不与,重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
如图,正方形 的边长为1,点 为边 上一动点,连接 并将其绕点 顺时针旋转 得到 ,连接 ,以 、 为邻边作矩形 , 与 、 分别交于点 、 , 交 延长线于点 .
(1)证明:点 、 、 在同一条直线上;
(2)随着点 的移动,线段 是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连接 、 ,当 时,求 的长.
有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形 中, , ,求 与 的度数之和;
(2)如图2,锐角 内接于 ,若边 上存在一点 ,使得 , 的平分线交 于点 ,连接 并延长交 于点 , .求证:四边形 是半对角四边形;
(3)如图3,在(2)的条件下,过点 作 于点 ,交 于点 ,当 时,求 与 的面积之比.
如图1,已知四边形 是矩形,点 在 的延长线上, . 与 相交于点 ,与 相交于点 , .
(1)求证: ;
(2)若 ,求 的长;
(3)如图2,连接 ,求证: .
如图,在矩形 中, 是边 上一点, , ,垂足为 .将四边形 绕点 顺时针旋转 ,得到四边形 , 所在的直线分别交直线 于点 ,交直线 于点 ,交 于点 . 所在的直线分别交直线 于点 ,交直线 于点 ,连接 交 于点 .
(1)如图1,求证:四边形 是正方形;
(2)如图2,当点 和点 重合时.
①求证: ;
②若 , ,求线段 的长;
(3)如图3,若 交 于点 , ,求 的值.