已知:在平面直角坐标系中,点 O 为坐标原点,点 A 在 x 轴的负半轴上,直线 y = − 3 x + 7 2 3 与 x 轴、 y 轴分别交于 B 、 C 两点,四边形 ABCD 为菱形.
(1)如图1,求点 A 的坐标;
(2)如图2,连接 AC ,点 P 为 ΔACD 内一点,连接 AP 、 BP , BP 与 AC 交于点 G ,且 ∠ APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF 、 EF ,若 ∠ AFE = 30 ° ,求 A F 2 + E F 2 的值;
(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.
在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移 _______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.
如图,直线y=与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点是劣弧AO上一动点(点与不重合).抛物线y=-经过点A、C,与x轴交于另一点B,(1)求抛物线的解析式及点B的坐标;(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。(3)连交于点,延长至,使,试探究当点运动到何处时,直线与⊙M相切,并请说明理由.
如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)求点C的坐标;(2)当0<t<5时,求S与t之间的函数关系式,并求S的最大值;(3)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)
如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连结FE并廷长交BC的延长线于点G,连接BF、BE。且BE⊥FG;(1)求证:BF=BG。(2)若tan∠BFG=,S△CGE=6,求AD的长。