国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?
如图,已知 AB 是 ⊙ O 的直径, CD 与 ⊙ O 相切于 C , BE / / CO .
(1)求证: BC 是 ∠ ABE 的平分线;
(2)若 DC = 8 , ⊙ O 的半径 OA = 6 ,求 CE 的长.
如图,已知反比例函数 y = k x 的图象经过点 A ( 4 , m ) , AB ⊥ x 轴,且 ΔAOB 的面积为2.
(1)求 k 和 m 的值;
(2)若点 C ( x , y ) 也在反比例函数 y = k x 的图象上,当 − 3 ⩽ x ⩽ − 1 时,求函数值 y 的取值范围.
在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.
请根据统计图解决下面的问题:
(1)该物流园2016年货运总量是多少万吨?
(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;
(3)求条形统计图中陆运货物量对应的扇形圆心角的度数.
甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?
抛物线 y = − x 2 + 4 ax + b ( a > 0 ) 与 x 轴相交于 O 、 A 两点(其中 O 为坐标原点),过点 P ( 2 , 2 a ) 作直线 PM ⊥ x 轴于点 M ,交抛物线于点 B ,点 B 关于抛物线对称轴的对称点为 C (其中 B 、 C 不重合),连接 AP 交 y 轴于点 N ,连接 BC 和 PC .
(1) a = 3 2 时,求抛物线的解析式和 BC 的长;
(2)如图 a > 1 时,若 AP ⊥ PC ,求 a 的值;
(3)是否存在实数 a ,使 AP PN = 1 2 ?若存在,求出 a 的值,如不存在,请说明理由.