初中数学

(1)如图1,已知 EK 垂直平分 BC ,垂足为 D AB EK 相交于点 F ,连接 CF .求证: AFE = CFD

(2)如图2,在 Rt Δ GMN 中, M = 90 ° P MN 的中点.

①用直尺和圆规在 GN 边上求作点 Q ,使得 GQM = PQN (保留作图痕迹,不要求写作法);

②在①的条件下,如果 G = 60 ° ,那么 Q GN 的中点吗?为什么?

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.

(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE BP CE 的数量关系是   CE AD 的位置关系是  

(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);

(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 BE = 2 19 ,求四边形 ADPE 的面积.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, O AC 上一点,以点 O 为圆心, OC 为半径做圆,与 BC 相切于点 C ,过点 A AD BO BO 的延长线于点 D ,且 AOD = BAD

(1)求证: AB O 的切线;

(2)若 BC = 6 tan ABC = 4 3 ,求 AD 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, E AB 的中点, AD / / EC AED = B

(1)求证: ΔAED ΔEBC

(2)当 AB = 6 时,求 CD 的长.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

小敏思考解决如下问题:

原题:如图1,点 P Q 分别在菱形 ABCD 的边 BC CD 上, PAQ = B ,求证: AP = AQ

(1)小敏进行探索,若将点 P Q 的位置特殊化;把 PAQ 绕点 A 旋转得到 EAF ,使 AE BC ,点 E F 分别在边 BC CD 上,如图2.此时她证明了 AE = AF ,请你证明.

(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 AE BC AF CD ,垂足分别为 E F .请你继续完成原题的证明.

(3)如果在原题中添加条件: AB = 4 B = 60 ° ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

数学课上,张老师举了下面的例题:

1 等腰三角形 ABC 中, A = 110 ° ,求 B 的度数.(答案: 35 ° )

2 等腰三角形 ABC 中, A = 40 ° ,求 B 的度数,(答案: 40 ° 70 ° 100 ° )

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形 ABC 中, A = 80 ° ,求 B 的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现, A 的度数不同,得到 B 的度数的个数也可能不同,如果在等腰三角形 ABC 中,设 A = x ° ,当 B 有三个不同的度数时,请你探索 x 的取值范围.

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AC 是对角线, BE AC DF AC ,垂足分别为点 E F ,求证: AE = CF

来源:2018年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.

(1)概念理解:

如图1,在 ΔABC 中, AC = 6 BC = 3 ACB = 30 ° ,试判断 ΔABC 是否是”等高底”三角形,请说明理由.

(2)问题探究:

如图2, ΔABC 是“等高底”三角形, BC 是”等底”,作 ΔABC 关于 BC 所在直线的对称图形得到△ A ' BC ,连接 AA ' 交直线 BC 于点 D .若点 B 是△ AA ' C 的重心,求 AC BC 的值.

(3)应用拓展:

如图3,已知 l 1 / / l 2 l 1 l 2 之间的距离为2.“等高底” ΔABC 的“等底” BC 在直线 l 1 上,点 A 在直线 l 2 上,有一边的长是 BC 2 倍.将 ΔABC 绕点 C 按顺时针方向旋转 45 ° 得到△ A ' B ' C A ' C 所在直线交 l 2 于点 D .求 CD 的值.

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知: 在 ΔABC 中, AB = AC D AC 的中点, DE AB DF BC ,垂足分别为点 E F ,且 DE = DF . 求证: ΔABC 是等边三角形 .

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ABC 中, BAC = 90 ° AB AC D E 分别为 AC BC 边上的点(不包括端点),且 DC BE = AC BC = m ,连接 AE ,过点 D DM AE ,垂足为点 M ,延长 DM AB 于点 F

(1)如图1,过点 E EH AB 于点 H ,连接 DH

①求证:四边形 DHEC 是平行四边形;

②若 m = 2 2 ,求证: AE = DF

(2)如图2,若 m = 3 5 ,求 DF AE 的值.

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在边 BC 上(不与点 B C 重合),连接 AG ,作 DE AG 于点 E BF AG 于点 F ,设 BG BC = k

(1)求证: AE = BF

(2)连接 BE DF ,设 EDF = α EBF = β .求证: tan α = k tan β

(3)设线段 AG 与对角线 BD 交于点 H ΔAHD 和四边形 CDHG 的面积分别为 S 1 S 2 ,求 S 2 S 1 的最大值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题