如图,在正方形 ABCD中,点 G在边 BC上(不与点 B, C重合),连接 AG,作 DE⊥AG于点 E, BF⊥AG于点 F,设 BGBC=k.
(1)求证: AE=BF.
(2)连接 BE, DF,设 ∠EDF=α, ∠EBF=β.求证: tanα=ktanβ.
(3)设线段 AG与对角线 BD交于点 H, ΔAHD和四边形 CDHG的面积分别为 S1和 S2,求 S2S1的最大值.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).(1)画出△AOB绕点O逆时针旋转90°后得到的△A1OB1.(2)填空:点A1的坐标为 .(3)求出在旋转过程中,线段OB扫过的扇形面积.
已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求:(1)Rt△ABC的面积;(2)斜边AB的长.
解方程:(1)4x2-9=0 (2)x(x-2)+x-2=0
已知△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,联结AF、AE,交BD于点G. (1)如图(1),求证:∠EAF=∠ABD; 图(1) (2)如图(2),当AB=AD时,M是线段AG上一点,联结BM、ED、MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究线段FM和FN之间的数量关系,并证明你的结论. 图(2)
已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,以A、P、Q为顶点的三角形与△AOC相似;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大.若存在,求出点D的坐标;若不存在,请说明理由.