如图,在正方形 ABCD 中,点 G 在边 BC 上(不与点 B , C 重合),连接 AG ,作 DE ⊥ AG 于点 E , BF ⊥ AG 于点 F ,设 BG BC = k .
(1)求证: AE = BF .
(2)连接 BE , DF ,设 ∠ EDF = α , ∠ EBF = β .求证: tan α = k tan β .
(3)设线段 AG 与对角线 BD 交于点 H , ΔAHD 和四边形 CDHG 的面积分别为 S 1 和 S 2 ,求 S 2 S 1 的最大值.
解下列二元一次方程组: (1) (2)
如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为cm. (1)从图可知,每个小长方形较长一边长是cm(用含的代数式表示); (2)求图中两块阴影A、B的周长和(可以用的代数式表示); (3)分别用含,的代数式表示阴影A、B的面积,并求为何值时两块阴影部分的面积相等.
如图,已知四边形ABCD,AD∥BC.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为. (1)当点P在线段CD上运动时,写出之间的关系并说出理由; (2)如果点P在线段CD(或DC)的延长线上运动,探究之间的关系,并选择其中的一种情况说明理由.
某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量. (1)问:年降水量为多少万m3?每人年平均用水量多少m3? (2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?
(1)先化简,再求值:,其中,. (2)已知,,求出和的值.