小敏思考解决如下问题:
原题:如图1,点 P , Q 分别在菱形 ABCD 的边 BC , CD 上, ∠ PAQ = ∠ B ,求证: AP = AQ .
(1)小敏进行探索,若将点 P , Q 的位置特殊化;把 ∠ PAQ 绕点 A 旋转得到 ∠ EAF ,使 AE ⊥ BC ,点 E , F 分别在边 BC , CD 上,如图2.此时她证明了 AE = AF ,请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 AE ⊥ BC , AF ⊥ CD ,垂足分别为 E , F .请你继续完成原题的证明.
(3)如果在原题中添加条件: AB = 4 , ∠ B = 60 ° ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
计算: (1);(2).
如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与一重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时. (1)证明:BE=DF; (2)如图2,作∠EAF的平分线交CD于G点,连接EG.证明:BE+DG=EG; (3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF.线段BE,DF和EF之间有怎样的数量关系?并加以证明.
第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满; (1)则该校参加此次活动的师生人数为(用含x的代数式表示); (2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人? (3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.
如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0, (1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标; (2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由; 点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值
A城有肥料300吨,B城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A城运往甲乡的肥料为x吨. (1)请你填空完成下表中的每一空:
(2)设总的运费为y(元),请你求出y与x之间的函数关系式; (3)怎样调运化肥,可使总运费最少?最少运费是多少?