在菱形 ABCD 中, ∠ ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.
(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE , BP 与 CE 的数量关系是 , CE 与 AD 的位置关系是 ;
(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 , BE = 2 19 ,求四边形 ADPE 的面积.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元. (1)求与的函数关系式并直接写出自变量的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
如图,点A、E,是半圆周上的三等分点,直径=2,,垂足为,连接交于,过作∥交于. (1)判断直线与⊙的位置关系,并说明理由. (2)求线段的长.
已知抛物线经过点(3,0),(-1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点, (1)求证:AC2=AB•AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求的值.
如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板的长为5米,点、、在同一水平地面上. 求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)