初中数学

ABC为等边三角形, AB 8 AD BC 于点DE为线段 AD 上一点, AE 2 3 .以AE为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE N CE 的中点.

(1)如图1, EF AC 交于点G,连接 NG ,求线段 NG 的长;

(2)如图2,将 AEF 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 DN MN .当 30 ° α 120 ° 时,猜想∠DNM的大小是否为定值,并证明你的结论;

(3)连接BN,在 AEF 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 ADN 的面积.

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE CF 分别平分 BAD DCB ,交对角线 BD 于点EF

(1)若 BCF 60 ° ,求 ABC 的度数;

(2)求证: BE DF

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt AOB 中, AOB 90 ° OA OB ,点C AB 的中点,以OC为半径作 O

(1)求证: AB O 的切线;

(2)若 OC 2 ,求 OA 的长.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AD 平分 BAC BC 边于点 E ,交 O 于点 D ,过点 A AF BC 于点 F ,设 O 的半径为 R AF = h

(1)过点 D 作直线 MN / / BC ,求证: MN O 的切线;

(2)求证: AB · AC = 2 R · h

(3)设 BAC = 2 α ,求 AB + AC AD 的值(用含 α 的代数式表示).

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

发现规律

(1)如图①, ΔABC ΔADE 都是等边三角形,直线 BD CE 交于点 F .直线 BD AC 交于点 H .求 BFC 的度数.

(2)已知: ΔABC ΔADE 的位置如图②所示,直线 BD CE 交于点 F .直线 BD AC 交于点 H .若 ABC = ADE = α ACB = AED = β ,求 BFC 的度数.

应用结论

(3)如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) N y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 ° 得到线段 MK ,连接 NK OK .求线段 OK 长度的最小值.

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 的外角 BAM 的平分线与它的外接圆相交于点 E ,连接 BE CE ,过点 E EF / / BC ,交 CM 于点 D

求证:(1) BE = CE

(2) EF O 的切线.

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

ΔABC ΔAED 均为等腰三角形,且 BAC = EAD = 90 °

(1)如图(1),点 B DE 的中点,判定四边形 BEAC 的形状,并说明理由;

(2)如图(2),若点 G EC 的中点,连接 GB 并延长至点 F ,使 CF = CD

求证:① EB = DC

EBG = BFC

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学三角形解答题