若 ΔABC 和 ΔAED 均为等腰三角形,且 ∠ BAC = ∠ EAD = 90 ° .
(1)如图(1),点 B 是 DE 的中点,判定四边形 BEAC 的形状,并说明理由;
(2)如图(2),若点 G 是 EC 的中点,连接 GB 并延长至点 F ,使 CF = CD .
求证:① EB = DC ,
② ∠ EBG = ∠ BFC .
(1)计算:(﹣1)2﹣2cos30°++(﹣2014)0; (2)当x为何值时,代数式x2﹣x的值等于1.
如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B. (1)求抛物线的函数表达式; (2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标; (3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.
如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B. (1)证明△COF是等腰三角形,并求出CF的长; (2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?
已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA. (1)当直线CD与半圆O相切时(如图①),求∠ODC的度数; (2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC, ①AE与OD的大小有什么关系?为什么? ②求∠ODC的度数.
为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元. (1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式; (2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?