初中数学

如图,在中,平分于点,过点于点,点是线段上的动点,连结并延长分别交于点

(1)求的长.

(2)若点是线段的中点,求的值.

(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得

来源:2019年浙江省衢州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在等腰中,,以为直径作于点,过点,垂足为

(1)求证:的切线.

(2)若,求的长.

来源:2019年浙江省衢州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知:如图,在菱形中,点分别在边上,且,连结.求证:

来源:2019年浙江省衢州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在中,的角平分线,分别是上的点.

求证:四边形是邻余四边形.

(2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.若的中点,,求邻余线的长.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,矩形的顶点分别在菱形的边上,顶点在菱形的对角线上.

(1)求证:

(2)若中点,,求菱形的周长.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在等腰中,,点分别在边上,将线段绕点按逆时针方向旋转得到

(1)如图1,若,点与点重合,相交于点.求证:

(2)已知点的中点.

①如图2,若,求的长.

②若,是否存在点,使得是直角三角形?若存在,求的长;若不存在,试说明理由.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,以为圆心,为半径的圆与相切于点,与相交于点

(1)求的度数.

(2)如图,点上,连结交于点,若,求的度数.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在的方格中,的顶点均在格点上.试按要求画出线段均为格点),各画出一条即可.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

的方格纸中,点都在格点上,按要求画图:

(1)在图1中找一个格点,使以点为顶点的四边形是平行四边形.

(2)在图2中仅用无刻度的直尺,把线段三等分(保留画图痕迹,不写画法).

来源:2019年浙江省嘉兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在矩形中,点在对角线.请添加一个条件,使得结论“”成立,并加以证明.

来源:2019年浙江省嘉兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图1,已知在平面直角坐标系中,四边形是矩形,点分别在轴和轴的正半轴上,连结的中点.

(1)求的长和点的坐标;

(2)如图2,是线段上的点,,点是线段上的一个动点,经过三点的抛物线交轴的正半轴于点,连结于点

①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;

②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系中,直线分别交轴和轴于点

(1)如图1,已知经过点,且与直线相切于点,求的直径长;

(2)如图2,已知直线分别交轴和轴于点和点,点是直线上的一个动点,以为圆心,为半径画圆.

①当点与点重合时,求证:直线相切;

②设与直线相交于两点,连结.问:是否存在这样的点,使得是等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,已知在中,分别是的中点,连结

(1)求证:四边形是平行四边形;

(2)若,求四边形的周长.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,已知锐角三角形内接于圆于点,连接

(1)若

①求证:

②当时,求面积的最大值.

(2)点在线段上,,连接,设是正数),若,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学三角形解答题