初中数学

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 边上的中线, DE AB 于点 E

(1)求证: ΔBDE ΔCAD

(2)若 AB = 13 BC = 10 ,求线段 DE 的长.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:如图, E F 是平行四边形 ABCD 的对角线 AC 上的两点, AE = CF

求证:(1) ΔADF ΔCBE

(2) EB / / DF

来源:2018年浙江省杭州市临安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

阅读下列题目的解题过程:

已知 a b c ΔABC 的三边,且满足 a 2 c 2 b 2 c 2 = a 4 b 4 ,试判断 ΔABC 的形状.

解: a 2 c 2 b 2 c 2 = a 4 b 4 (A)

c 2 ( a 2 b 2 ) = ( a 2 + b 2 ) ( a 2 b 2 ) (B)

c 2 = a 2 + b 2 (C)

ΔABC 是直角三角形

问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:  

(2)错误的原因为:  

(3)本题正确的结论为:  

来源:2018年浙江省杭州市临安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知线段 AB = 2 MN AB 于点 M ,且 AM = BM P 是射线 MN 上一动点, E D 分别是 PA PB 的中点,过点 A M D 的圆与 BP 的另一交点 C (点 C 在线段 BD 上),连接 AC DE

(1)当 APB = 28 ° 时,求 B CM ̂ 的度数;

(2)求证: AC = AB

(3)在点 P 的运动过程中

①当 MP = 4 时,取四边形 ACDE 一边的两端点和线段 MP 上一点 Q ,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;

②记 AP 与圆的另一个交点为 F ,将点 F 绕点 D 旋转 90 ° 得到点 G ,当点 G 恰好落在 MN 上时,连接 AG CG DG EG ,直接写出 ΔACG ΔDEG 的面积之比.

来源:2017年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ACB = 90 ° O (圆心 O ΔABC 内部)经过 B C 两点,交 AB 于点 E ,过点 E O 的切线交 AC 于点 F .延长 CO AB 于点 G ,作 ED / / AC CG 于点 D

(1)求证:四边形 CDEF 是平行四边形;

(2)若 BC = 3 tan DEF = 2 ,求 BG 的值.

来源:2017年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在五边形 ABCDE 中, BCD = EDC = 90 ° BC = ED AC = AD

(1)求证: ΔABC ΔAED

(2)当 B = 140 ° 时,求 BAE 的度数.

来源:2017年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 x 2 5 x + 2 = 0 ,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点 A ( 0 , 1 ) B ( 5 , 2 )

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 A ,另一条直角边恒过点 B

第三步:在移动过程中,当三角板的直角顶点落在 x 轴上点 C 处时,点 C 的横坐标 m 即为该方程的一个实数根(如图 1 )

第四步:调整三角板直角顶点的位置,当它落在 x 轴上另一点 D 处时,点 D 的横坐标 n 即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点 D (请保留作出点 D 时直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的 m 就是方程 x 2 5 x + 2 = 0 的一个实数根;

(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 a x 2 + bx + c = 0 ( a 0 , b 2 4 ac 0 ) 的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当 m 1 n 1 m 2 n 2 a b c 之间满足怎样的关系时,点 P ( m 1 n 1 ) Q ( m 2 n 2 ) 就是符合要求的一对固定点?

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知等腰直角三角形 ABC ,点 P 是斜边 BC 上一点(不与 B C 重合), PE ΔABP 的外接圆 O 的直径.

(1)求证: ΔAPE 是等腰直角三角形;

(2)若 O 的直径为2,求 P C 2 + P B 2 的值.

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在直角坐标系中,过原点 O 及点 A ( 8 , 0 ) C ( 0 , 6 ) 作矩形 OABC 、连接 OB ,点 D OB 的中点,点 E 是线段 AB 上的动点,连接 DE ,作 DF DE ,交 OA 于点 F ,连接 EF .已知点 E A 点出发,以每秒1个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒.

(1)如图1,当 t = 3 时,求 DF 的长.

(2)如图2,当点 E 在线段 AB 上移动的过程中, DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 tan DEF 的值.

(3)连接 AD ,当 AD ΔDEF 分成的两部分的面积之比为 1 : 2 时,求相应的 t 的值.

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

问题背景

如图1,在正方形 ABCD 的内部,作 DAE = ABF = BCG = CDH ,根据三角形全等的条件,易得 ΔDAE ΔABF ΔBCG ΔCDH ,从而得到四边形 EFGH 是正方形.

类比探究

如图2,在正 ΔABC 的内部,作 BAD = CBE = ACF AD BE CF 两两相交于 D E F 三点 ( D E F 三点不重合)

(1) ΔABD ΔBCE ΔCAF 是否全等?如果是,请选择其中一对进行证明.

(2) ΔDEF 是否为正三角形?请说明理由.

(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a AD = b AB = c ,请探索 a b c 满足的等量关系.

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

有两个内角分别是它们对角的一半的四边形叫做半对角四边形.

(1)如图1,在半对角四边形 ABCD 中, B = 1 2 D C = 1 2 A ,求 B C 的度数之和;

(2)如图2,锐角 ΔABC 内接于 O ,若边 AB 上存在一点 D ,使得 BD = BO OBA 的平分线交 OA 于点 E ,连接 DE 并延长交 AC 于点 F AFE = 2 EAF .求证:四边形 DBCF 是半对角四边形;

(3)如图3,在(2)的条件下,过点 D DG OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 ΔBGH ΔABC 的面积之比.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形 ABCD 的四边 BA CB DC AD 分别延长至 E F G H ,使得 AE = CG BF = DH ,连接 EF FG GH HE

(1)求证:四边形 EFGH 为平行四边形;

(2)若矩形 ABCD 是边长为1的正方形,且 FEB = 45 ° tan AEH = 2 ,求 AE 的长.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E AD 上的一个动点,连接 BE ,作点 A 关于 BE 的对称点 F ,且点 F 落在矩形 ABCD 的内部,连接 AF BF EF ,过点 F GF AF AD 于点 G ,设 AD AE = n

(1)求证: AE = GE

(2)当点 F 落在 AC 上时,用含 n 的代数式表示 AD AB 的值;

(3)若 AD = 4 AB ,且以点 F C G 为顶点的三角形是直角三角形,求 n 的值.

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,以 BC 为直径的 O AB 于点 D ,切线 DE AC 于点 E

(1)求证: A = ADE

(2)若 AD = 16 DE = 10 ,求 BC 的长.

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题