如图,在 ΔABC 中, ∠ ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD .
(1)若 ∠ A = 28 ° ,求 ∠ ACD 的度数.
(2)设 BC = a , AC = b .
①线段 AD 的长是方程 x 2 + 2 ax − b 2 = 0 的一个根吗?说明理由.
②若 AD = EC ,求 a b 的值.
计算:(-13)+(-8)
请画出一条数轴,然后在所得的数轴上把下列各数表示出来: 3,―4,―2,0,―1,1;并用“<”连接.
把下列各数填在相应的大括号内: 15, , 0.81, -3, ,-, 0, 50% 负数集合{…} 正整数集合{…} 非负数集合{…} 有理数集合{…}
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题: (1) 分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形; (2) 设AD=x,建立关于x的方程模型,求出x的值.
某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件.现在要获利12000元,且销售成本不超过24000元,问这种服装销售单价应定多少为宜?这时应进多少件服装?