如图,已知线段 AB = 2 , MN ⊥ AB 于点 M ,且 AM = BM , P 是射线 MN 上一动点, E , D 分别是 PA , PB 的中点,过点 A , M , D 的圆与 BP 的另一交点 C (点 C 在线段 BD 上),连接 AC , DE .
(1)当 ∠ APB = 28 ° 时,求 ∠ B 和 CM ̂ 的度数;
(2)求证: AC = AB .
(3)在点 P 的运动过程中
①当 MP = 4 时,取四边形 ACDE 一边的两端点和线段 MP 上一点 Q ,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;
②记 AP 与圆的另一个交点为 F ,将点 F 绕点 D 旋转 90 ° 得到点 G ,当点 G 恰好落在 MN 上时,连接 AG , CG , DG , EG ,直接写出 ΔACG 和 ΔDEG 的面积之比.
如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE. (1)如图①所示,当点D在线段BC上时: ①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由; (2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由. (3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.
如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.
如图,在▱ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF. (1)试说明△CEF是等腰三角形; (2)△CEF的哪两边之和恰好是▱ABCD的周长?并说明理由.
如图,已知 AB∥DC,E是BC的中点,AE,DC的延长线交于点F; (1)求证:△ABE≌△FCE; (2)连接AC,BF.则四边形ABFC是什么特殊的四边形?请说明理由.
如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.