阅读下列题目的解题过程:
已知 a 、 b 、 c 为 ΔABC 的三边,且满足 a 2 c 2 − b 2 c 2 = a 4 − b 4 ,试判断 ΔABC 的形状.
解: ∵ a 2 c 2 − b 2 c 2 = a 4 − b 4 (A)
∴ c 2 ( a 2 − b 2 ) = ( a 2 + b 2 ) ( a 2 − b 2 ) (B)
∴ c 2 = a 2 + b 2 (C)
∴ ΔABC 是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF. (1)如图1,当点D在线段BC上时.求证:CF+CD=BC; (2)如图2,当点D在线段BC的延长线上时,其他条件不变,则CF,BC,CD三条线段之间有什么关系?并说明理由.
操作:准备一张长方形纸,按下图操作: (1)把矩形ABCD对折,得折痕MN; (2)把A折向MN,得Rt△AEB; (3)沿线段EA折叠,得到另一条折痕EF,展开后可得到△EBF. 探究:△EBF的形状,并说明理由.
某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示. (1)有月租费的收费方式是(填①或②),月租费是元; (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上 (1)求线段AB所在直线的函数解析式; (2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有个,在图上标出P点的位置.
如图,已知E是ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F. (1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.