问题背景
如图1,在正方形 ABCD 的内部,作 ∠ DAE = ∠ ABF = ∠ BCG = ∠ CDH ,根据三角形全等的条件,易得 ΔDAE ≅ ΔABF ≅ ΔBCG ≅ ΔCDH ,从而得到四边形 EFGH 是正方形.
类比探究
如图2,在正 ΔABC 的内部,作 ∠ BAD = ∠ CBE = ∠ ACF , AD , BE , CF 两两相交于 D , E , F 三点 ( D , E , F 三点不重合)
(1) ΔABD , ΔBCE , ΔCAF 是否全等?如果是,请选择其中一对进行证明.
(2) ΔDEF 是否为正三角形?请说明理由.
(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a , AD = b , AB = c ,请探索 a , b , c 满足的等量关系.
如图,A、B是太湖中的两个景点,C为湖中另一个景点.景点C在景点B的正西方向,从景点A看,景点C在北偏东30°方向,景点B在北偏东75°方向.一游客自景点A驾船以每分钟20米的速度行驶了16分钟到达景点C,之后又以同样的速度驶向景点B,该游客从景点C到景点B需用多长时间?(精确到1分钟)(参考数据:≈1.41、≈1.73、 sin75°≈0.97、cos75°≈0.26、tan75°≈3.73)
有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字,4,的小球.小明先从A口袋中随机取出—个小球,再从B口袋中随机取出一个小球,用树状图法或列表法表示小明所取出的二个小球的和为奇数的概率.
某学校为丰富大课间体育活动的内容,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,整理收集到的数据,绘制成如图所示的统计图.(1)学校采用的调查方式是 ;(2)写出喜欢“踢毽子”的学生人数,并在图中将“踢毽子”部分的图形补充完整;(3)该校共有800名学生,请估计喜欢“跳绳”的学生人数.
如图,在ΔABC和ΔDCB中,AC与BD相交于点, AB = DC,AC = BD.(1)求证: ΔABC≌ΔDCB;(2) Δ0BC的形状是 (直接写出结论,不需证明) .
(1)解方程:; (2)解不等式组: