问题背景
如图1,在正方形 ABCD 的内部,作 ∠ DAE = ∠ ABF = ∠ BCG = ∠ CDH ,根据三角形全等的条件,易得 ΔDAE ≅ ΔABF ≅ ΔBCG ≅ ΔCDH ,从而得到四边形 EFGH 是正方形.
类比探究
如图2,在正 ΔABC 的内部,作 ∠ BAD = ∠ CBE = ∠ ACF , AD , BE , CF 两两相交于 D , E , F 三点 ( D , E , F 三点不重合)
(1) ΔABD , ΔBCE , ΔCAF 是否全等?如果是,请选择其中一对进行证明.
(2) ΔDEF 是否为正三角形?请说明理由.
(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a , AD = b , AB = c ,请探索 a , b , c 满足的等量关系.
已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,与y轴交于点C,且满足. (1)求这个二次函数的解析式; (2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.
如图,在矩形ABCD中,M、N分别是AD.BC的中点,P、Q分别是BM、DN的中点. (1)求证:△MBA≌△NDC; (2)四边形MPNQ是什么样的特殊四边形?请说明理由.
体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.
(1)购进篮球和排球各多少个? (2)销售6个排球的利润与销售几个篮球的利润相等?
学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题: (1)本次问卷调查,共调查了多少名学生? (2)将图甲中“B”部分的图形补充完整; (3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?
如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).