初中数学

如图,在 ΔABC 中, AC = BC ACB = 90 ° O (圆心 O ΔABC 内部)经过 B C 两点,交 AB 于点 E ,过点 E O 的切线交 AC 于点 F .延长 CO AB 于点 G ,作 ED / / AC CG 于点 D

(1)求证:四边形 CDEF 是平行四边形;

(2)若 BC = 3 tan DEF = 2 ,求 BG 的值.

来源:2017年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的角平分线,在 AB 上取点 D ,使 DB = DE

(1)求证: DE / / BC

(2)若 A = 65 ° AED = 45 ° ,求 EBC 的度数.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知等腰直角三角形 ABC ,点 P 是斜边 BC 上一点(不与 B C 重合), PE ΔABP 的外接圆 O 的直径.

(1)求证: ΔAPE 是等腰直角三角形;

(2)若 O 的直径为2,求 P C 2 + P B 2 的值.

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,过 ABCD 对角线 AC BD 的交点 E 作两条互相垂直的直线,分别交边 AB BC CD DA 于点 P M Q N

(1)求证: ΔPBE ΔQDE

(2)顺次连接点 P M Q N ,求证:四边形 PMQN 是菱形.

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形 ABCD 的四边 BA CB DC AD 分别延长至 E F G H ,使得 AE = CG BF = DH ,连接 EF FG GH HE

(1)求证:四边形 EFGH 为平行四边形;

(2)若矩形 ABCD 是边长为1的正方形,且 FEB = 45 ° tan AEH = 2 ,求 AE 的长.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, D E F 分别是 ΔABC 各边的中点,连接 DE EF AE

(1)求证:四边形 ADEF 为平行四边形;

(2)加上条件   后,能使得四边形 ADEF 为菱形,请从① BAC = 90 ° ;② AE 平分 BAC ;③ AB = AC 这三个条件中选择1个条件填空(写序号),并加以证明.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,已知: AB O 的直径,点 C O 上, CD O 的切线, AD CD 于点 D E AB 延长线上一点, CE O 于点 F ,连接 OC AC

(1)求证: AC 平分 DAO

(2)若 DAO = 105 ° E = 30 °

①求 OCE 的度数;

②若 O 的半径为 2 2 ,求线段 EF 的长.

来源:2017年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC ΔDCE 中, AC = DE B = DCE = 90 ° ,点 A C D 依次在同一直线上,且 AB / / DE

(1)求证: ΔABC ΔDCE

(2)连结 AE ,当 BC = 5 AC = 12 时,求 AE 的长.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学三角形解答题