如图,已知: AB 是 ⊙ O 的直径,点 C 在 ⊙ O 上, CD 是 ⊙ O 的切线, AD ⊥ CD 于点 D , E 是 AB 延长线上一点, CE 交 ⊙ O 于点 F ,连接 OC 、 AC .
(1)求证: AC 平分 ∠ DAO .
(2)若 ∠ DAO = 105 ° , ∠ E = 30 °
①求 ∠ OCE 的度数;
②若 ⊙ O 的半径为 2 2 ,求线段 EF 的长.
如图,AB是⊙O的直径,点D在AB的延长线上,过点D作DC切⊙O于点C,若∠A=35°,则∠D= °.
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.(1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).(2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数.(3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.①当t=4时,求PH的长.②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).
如图,在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经过点D,P为抛物线上的一动点.(1)直接写出点D的坐标;(2)求抛物线的解析式;(3)求点P到点A的距离与点P到x轴的距离之差;(4)当点P位于何处时,△APB的周长有最小值,并求出△APB的周长的最小值.
已知如图1,Rt△ABC和Rt△ADE的直角边AC和AE重叠在一起,AD=AE,∠B=30°,∠DAE=∠ACB=90°.(1)如图1,填空:∠BAD= ;= ;(2)如图2,将△ADE绕点A顺时针旋转,使AE到AB边上,∠ACH=∠BCH,连接BH,求∠CBH的度数;(3)如图3,点P是BE上一点,过A、E两点分别作AN⊥PC、EM⊥PC,垂足分别为N、M,若EM=2,AN=5,求△AND的面积.
某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加 20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?