某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加 20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?
如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E. (1)求证:AD∥OC;(2)若AE=2,CE=2.求⊙O的半径和线段BE的长.
如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,且DE=DF.(1)求证:△ADE≌△CDF;(2)判断四边形ABCD的形状,并说明理由.
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
根据表格中的数据,已经求出甲六次测试的平均成绩=9环,方差=. (1)计算乙六次测试的平均成绩及方差; (2)你认为推荐谁参加全国比赛更合适?请说明理由. (提示:[(x1-)2+(x2-)2+…+(xn-)2])
已知二次函数的图象关于y轴对称,且过点(0,-2)和(1,-1).(1)求出这个二次函数的关系式;(2)判断该二次函数的图象与x轴的交点个数.
解方程:4t2-(t+1)2=0.