如图,在平面直角坐标系中,已知点A(0,1)、B(3,5),以AB为边作如图所示的正方形ABCD,顶点在坐标原点的抛物线恰好经过点D,P为抛物线上的一动点.(1)直接写出点D的坐标;(2)求抛物线的解析式;(3)求点P到点A的距离与点P到x轴的距离之差;(4)当点P位于何处时,△APB的周长有最小值,并求出△APB的周长的最小值.
某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不及格”、“及格”、“优秀”三个等级,为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示,试结合图形信息回答下列问题: (1)这32名学生培训前考分的中位数所在的等级是_______,培训后考分的中位数所在的等级是________. (2)这32名学生经过培训,考分等级“不合格”的百分比由_________下降到__________. (3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共有________名 (4)你认为上述估计合理吗?理由是什么? 答:__________ , 理由为______________________.
我们知道:平均数,中位数和众数都是数据的代表,它们从不同侧面反映了数据的平均水平.有一次:小王、小李和小张三位同学举行射击比赛,每人打10发子弹,命中环数如下: 小王:9 7 6 9 9 10 8 8 7 10 小李:7 10 9 8 9 10 6 8 9 10 小张:10 8 9 10 7 8 9 9 10 10 某种统计结果表明,三人的“平均水平”都是9环.根据这一结果,请判断三人运用了平均数、中位数和众数中的哪一种“平均水平”?(每人写出一个“平均水平”即可)
某市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩,已知竞赛成绩都是整数,试题满分为140分,参赛学生的成绩分布情况如下: 根据以上信息解答下列问题: (1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么范围内? (2)经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求此次参加本次竞赛决赛考生的获奖比例; (3)决赛成绩的中位数落在哪个分数段内? (4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等,请你再写出两条此表提供的信息。
某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:
(1)如果根据三项测试的平均成绩,谁将被录用,说明理由; (2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.
为了帮助四川灾区学生重返课堂,某市团委发起了“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息捐给灾区学生. 某校所有同学全都积极参加了这一活动,为灾区同学献一份爱心. 该校学生会根据本校这次活动绘制了如下统计图. 请根据统计图中的信息,回答下列问题: (1)该校一共有多少名学生? (2)该校学生人均存款多少元? (3)已知银行一年期定期存款的年利率是2.25% ,若一名灾区学生一年学习用品的基本费用是400元,那么该校一年大约能为多少名灾区学生提供此项费用?(利息=本金×利率,免收利息税)