初中数学

如图,已知四边形 ABCD 是平行四边形,点 E F 分别是 AB BC 上的点, AE = CF ,并且 AED = CFD

求证:(1) ΔAED ΔCFD

(2)四边形 ABCD 是菱形.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在菱形 ABCD 的边 BC CD 上,且 BE = DF .求证: BAE = DAF

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图①,在四边形 ABCD 中, AC BD 于点 E AB = AC = BD ,点 M BC 中点, N 为线段 AM 上的点,且 MB = MN

(1)求证: BN 平分 ABE

(2)若 BD = 1 ,连接 DN ,当四边形 DNBC 为平行四边形时,求线段 BC 的长;

(3)如图②,若点 F AB 的中点,连接 FN FM ,求证: ΔMFN ΔBDC

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AB > AD

(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)

(2)在(1)所作的图形中,连接 DECF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知: ΔABC 内接于 O AB O 的直径,作 EG AB H ,交 BC F ,延长 GE 交直线 MC D ,且 MCA = B ,求证:

(1) MC O 的切线;

(2) ΔDCF 是等腰三角形.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

小亮在学习中遇到这样一个问题:

如图,点 D BC ̂ 上一动点,线段 BC = 8 cm ,点 A 是线段 BC 的中点,过点 C CF / / BD ,交 DA 的延长线于点 F .当 ΔDCF 为等腰三角形时,求线段 BD 的长度.

小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:

(1)根据点 D BC ̂ 上的不同位置,画出相应的图形,测量线段 BD CD FD 的长度,得到下表的几组对应值.

BD / cm

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

CD / cm

8.0

7.7

7.2

6.6

5.9

a

3.9

2.4

0

FD / cm

8.0

7.4

6.9

6.5

6.1

6.0

6.2

6.7

8.0

操作中发现:

①“当点 D BC ̂ 的中点时, BD = 5 . 0 cm ”.则上表中 a 的值是 5.0 

②“线段 CF 的长度无需测量即可得到”.请简要说明理由.

(2)将线段 BD 的长度作为自变量 x CD FD 的长度都是 x 的函数,分别记为 y CD y FD ,并在平面直角坐标系 xOy 中画出了函数 y FD 的图象,如图所示.请在同一坐标系中画出函数 y CD 的图象;

(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当 ΔDCF 为等腰三角形时,线段 BD 长度的近似值(结果保留一位小数).

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,点 D AB 上, E AC 上, AB = AC B = C ,求证: AD = AE

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学三角形解答题