在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.
(1)观察猜想
如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.
如图,在中,,,以为直径的半圆交于点,点是上不与点,重合的任意一点,连接交于点,连接并延长交于点.
(1)求证:;
(2)填空:
①若,且点是的中点,则的长为 ;
②取的中点,当的度数为 时,四边形为菱形.
(1)问题发现
如图1,在和中,,,,连接,交于点.填空:
①的值为 ;
②的度数为 .
(2)类比探究
如图2,在和中,,,连接交的延长线于点.请判断的值及的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将绕点在平面内旋转,,所在直线交于点,若,,请直接写出当点与点重合时的长.
如图,是的直径,于点,连接交于点,过点作的切线交于点,连接交于点.
(1)求证:;
(2)连接并延长,交于点.填空:
①当的度数为 时,四边形为菱形;
②当的度数为 时,四边形为正方形.
探究
(1)如图①,在等腰直角三角形中,,作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、
填空:
①线段、的数量关系为 .
②线段、的位置关系为 .
推广:
(2)如图②,在等腰三角形中,顶角,作平分交于点,点为外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接、、请判断(1)中的结论是否成立,并说明理由.
应用:
(3)如图③,在等边三角形中,.作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、.当以、、为顶点的三角形与全等时,请直接写出的值.
如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
(1)观察猜想:图1中,线段与的数量关系是 ,位置关系是 ;
(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
如图,在中,,以为直径的交边于点,过点作,与过点的切线交于点,连接.
(1)求证:;
(2)若,,求的长.
如图,在等边三角形中,,点,分别是边,的中点,点,同时沿射线的方向以相同的速度运动,某一时刻分别运动到点,处,连接,,,.
(1)写出图1中的一对全等三角形;
(2)如图2所示,当点在线段延长线上时,画出示意图,判断(1)中所写的一对三角形是否仍然全等,并说明理由;
(3)在点运动的过程中,若是直角三角形,直接写出此时线段的长度.
如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.
(1)发现:如图1,点 为线段 外一动点,且 , .
填空:当点 位于 时,线段 的长取得最大值,且最大值为 (用含 , 的式子表示)
(2)应用:点 为线段 外一动点,且 , ,如图2所示,分别以 , 为边,作等边三角形 和等边三角形 ,连接 , .
①请找出图中与 相等的线段,并说明理由;
②直接写出线段 长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 ,点 为线段 外一动点,且 , , ,请直接写出线段 长的最大值及此时点 的坐标.
如图,在 中, ,点 是 的中点,以 为直径作 分别交 , 于点 , .
(1)求证: ;
(2)填空:
①若 ,当 时, ;
②连接 , ,当 的度数为 时,四边形 是菱形.
问题发现
(1)如图(1),四边形 中,若 , ,则线段 , 的位置关系为 ;
拓展探究
(2)如图(2),在 中,点 为斜边 的中点,分别以 , 为底边,在 外部作等腰三角形 和等腰三角形 ,连接 , ,分别交 , 于点 , ,试猜想四边形 的形状,并说明理由;
解决问题
(3)如图(3),在正方形 中, ,以点 为旋转中心将正方形 旋转 ,得到正方形 ,请直接写出 的长度.
如图, 内接于圆 ,且 ,延长 到点 ,使 ,连接 交圆 于点 .
(1)求证: ;
(2)填空:
①当 的度数为 时,四边形 是菱形.
②若 , ,则 的长为 .
(1)探索发现
如图1,在中,点在边上,与的面积分别记为与,试判断与的数量关系,并说明理由.
(2)阅读解析
小东遇到这样一个问题:如图2,在中,,,射线交于点,点、在上,且,试判断、、三条线段之间的数量关系.
小东利用一对全等三角形,经过推理使问题得以解决.
填空:①图2中的一对全等三角形为 ;
②、、三条线段之间的数量关系为 .
(3)类比探究
如图3,在四边形中,,与交于点,点、在射线上,且.
①判断、、三条线段之间的数量关系,并说明理由;
②若,的面积为2,直接写出四边形的面积.