初中数学

如图,在 ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中:

①探究三条线段 AB CE CF 之间的数量关系,并说明理由;

②若 CE = 4 CF = 2 ,求 DN 的长.

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,平面内的两条直线 l 1 l 2 ,点 A B 在直线 l 1 上,点 C D 在直线 l 2 上,过 A B 两点分别作直线 l 2 的垂线,垂足分别为 A 1 B 1 ,我们把线段 A 1 B 1 叫做线段 AB 在直线 l 2 上的正投影,其长度可记作 T ( AB , CD ) T ( AB , l 2 ) ,特别地线段 AC 在直线 l 2 上的正投影就是线段 A 1 C

请依据上述定义解决如下问题:

(1)如图1,在锐角 ΔABC 中, AB = 5 T ( AC , AB ) = 3 ,则 T ( BC , AB ) =       

(2)如图2,在 Rt Δ ABC 中, ACB = 90 ° T ( AC , AB ) = 4 T ( BC , AB ) = 9 ,求 ΔABC 的面积;

(3)如图3,在钝角 ΔABC 中, A = 60 ° ,点 D AB 边上, ACD = 90 ° T ( AD , AC ) = 2 T ( BC , AB ) = 6 ,求 T ( BC , CD )

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知点 A ( a , m ) 在双曲线 y = 8 x 上且 m < 0 ,过点 A x 轴的垂线,垂足为 B

(1)如图1,当 a = - 2 时, P ( t , 0 ) x 轴上的动点,将点 B 绕点 P 顺时针旋转 90 ° 至点 C

①若 t = 1 ,直接写出点 C 的坐标;

②若双曲线 y = 8 x 经过点 C ,求 t 的值.

(2)如图2,将图1中的双曲线 y = 8 x ( x > 0 ) 沿 y 轴折叠得到双曲线 y = - 8 x ( x < 0 ) ,将线段 OA 绕点 O 旋转,点 A 刚好落在双曲线 y = - 8 x ( x < 0 ) 上的点 D ( d , n ) 处,求 m n 的数量关系.

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.

理解:

(1)如图1,已知 A B O 上两点,请在圆上找出满足条件的点 C ,使 ΔABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);

(2)如图2,在正方形 ABCD 中, E BC 的中点, F CD 上一点,且 CF = 1 4 CD ,试判断 ΔAEF 是否为“智慧三角形”,并说明理由;

运用:

(3)如图3,在平面直角坐标系 xOy 中, O 的半径为1,点 Q 是直线 y = 3 上的一点,若在 O 上存在一点 P ,使得 ΔOPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 P 的坐标.

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DF AC ,垂足为点 F

(1)求证: DF O 的切线;

(2)若 AE = 4 cos A = 2 5 ,求 DF 的长.

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图, A 为反比例函数 y = k x (其中 x > 0 ) 图象上的一点,在 x 轴正半轴上有一点 B OB = 4 .连接 OA AB ,且 OA = AB = 2 10

(1)求 k 的值;

(2)过点 B BC OB ,交反比例函数 y = k x (其中 x > 0 ) 的图象于点 C ,连接 OC AB 于点 D ,求 AD DB 的值.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC ,小聪同学利用直尺和圆规完成了如下操作:

①作 BAC 的平分线 AM BC 于点 D

②作边 AB 的垂直平分线 EF EF AM 相交于点 P

③连接 PB PC

请你观察图形解答下列问题:

(1)线段 PA PB PC 之间的数量关系是                  

(2)若 ABC = 70 ° ,求 BPC 的度数.

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 CEFG M AF 的中点,连接 DM EM

(1)如图1,点 E CD 上,点 G BC 的延长线上,请判断 DM EM 的数量关系与位置关系,并直接写出结论;

(2)如图2,点 E DC 的延长线上,点 G BC 上,(1)中结论是否仍然成立?请证明你的结论;

(3)将图1中的正方形 CEFG 绕点 C 旋转,使 D E F 三点在一条直线上,若 AB = 13 CE = 5 ,请画出图形,并直接写出 MF 的长.

来源:2018年湖北省十堰市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° BC = 1 ,以边 AC 上一点 O 为圆心, OA 为半径的 O 经过点 B

(1)求 O 的半径;

(2)点 P 为劣弧 AB 中点,作 PQ AC ,垂足为 Q ,求 OQ 的长;

(3)在(2)的条件下,连接 PC ,求 tan PCA 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,有一池塘,要测池塘两端 A B 的距离,可先在平地上取一个点 C ,从点 C 不经过池塘可以直接到达点 A B .连接 AC 并延长到点 D ,使 CD = CA .连接 BC 并延长到点 E ,使 CE = CB .连接 DE ,那么量出 DE 的长就是 A B 的距离.为什么?

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° ,点 D 与点 B AC 同侧, DAC > BAC ,且 DA = DC ,过点 B BE / / DA DC 于点 E M AB 的中点,连接 MD ME

(1)如图1,当 ADC = 90 ° 时,线段 MD ME 的数量关系是         

(2)如图2,当 ADC = 60 ° 时,试探究线段 MD ME 的数量关系,并证明你的结论;

(3)如图3,当 ADC = α 时,求 ME MD 的值.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

问题:已知 α β 均为锐角, tan α = 1 2 tan β = 1 3 ,求 α + β 的度数.

探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为 1 ) ,请借助这个网格图求出 α + β 的度数;

延伸:(2)设经过图中 M P H 三点的圆弧与 AH 交于 R ,求 MR ̂ 的弧长.

来源:2018年湖北省荆州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° ,点 D 与点 B AC 同侧, DAC > BAC ,且 DA = DC ,过点 B BE / / DA DC 于点 E M AB 的中点,连接 MD ME

(1)如图1,当 ADC = 90 ° 时,线段 MD ME 的数量关系是         

(2)如图2,当 ADC = 60 ° 时,试探究线段 MD ME 的数量关系,并证明你的结论;

(3)如图3,当 ADC = α 时,求 ME MD 的值.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 O 中,半径 OA OB ,过点 OA 的中点 C FD / / OB O D F 两点,且 CD = 3 ,以 O 为圆心, OC 为半径作 CE ̂ ,交 OB E 点.

(1)求 O 的半径 OA 的长;

(2)计算阴影部分的面积.

来源:2016年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形, AF 经过点 C ,连接 DE AF 于点 M ,观察发现:点 M DE 的中点.

下面是两位学生有代表性的证明思路:

思路1:不需作辅助线,直接证三角形全等;

思路2:不证三角形全等,连接 BD AF 于点 H

请参考上面的思路,证明点 M DE 的中点(只需用一种方法证明);

(2)如图2,在(1)的前提下,当 ABE = 135 ° 时,延长 AD EF 交于点 N ,求 AM NE 的值;

(3)在(2)的条件下,若 AF AB = k ( k 为大于 2 的常数),直接用含 k 的代数式表示 AM MF 的值.

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学三角形计算题