初中数学

如图,已知 MON = 90 ° OT MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O P Q 三点作圆,交 OT 于点 C ,连接 PC QC .设运动时间为 t ( s ) ,其中 0 < t < 8

(1)求 OP + OQ 的值;

(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.

(3)求四边形 OPCQ 的面积.

来源:2020年江苏省苏州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

【了解概念】

有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

【理解运用】

(1)如图①,对余四边形 ABCD 中, AB = 5 BC = 6 CD = 4 ,连接 AC .若 AC = AB ,求 sin CAD 的值;

(2)如图②,凸四边形 ABCD 中, AD = BD AD BD ,当 2 C D 2 + C B 2 = C A 2 时,判断四边形 ABCD 是否为对余四边形.证明你的结论;

【拓展提升】

(3)在平面直角坐标系中,点 A ( - 1 , 0 ) B ( 3 , 0 ) C ( 1 , 2 ) ,四边形 ABCD 是对余四边形,点 E 在对余线 BD 上,且位于 ΔABC 内部, AEC = 90 ° + ABC .设 AE BE = u ,点 D 的纵坐标为 t ,请直接写出 u 关于 t 的函数解析式.

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图①,二次函数的图象与直线交于两点.点轴上的一个动点,过点轴的垂线交直线1于点,交该二次函数的图象于点,设点的横坐标为

(1)    

(2)若点在点的上方,且,求的值;

(3)将直线向上平移4个单位长度,分别与轴、轴交于点(如图②

①记的面积为的面积为,是否存在,使得点在直线的上方,且满足?若存在,求出及相应的的值;若不存在,请说明理由.

②当时,将线段绕点顺时针旋转得到线段,连接.若,直接写出直线与该二次函数图象交点的横坐标.

来源:2020年江苏省淮安市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于点,过点轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接

(1)填空:   

(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;

(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点轴上时,直接写出的长.

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接

(1)求的度数;

(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;

(3)分别记的面积为,当时,求弦的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.

根据以上定义,解决下列问题:

(1)如图1,正方形 ABCD 中, E CD 上的点,将 ΔBCE B 点旋转,使 BC BA 重合,此时点 E 的对应点 F DA 的延长线上,则四边形 BEDF 为"直等补"四边形,为什么?

(2)如图2,已知四边形 ABCD 是"直等补"四边形, AB = BC = 5 CD = 1 AD > AB ,点 B 到直线 AD 的距离为 BE

①求 BE 的长;

②若 M N 分别是 AB AD 边上的动点,求 ΔMNC 周长的最小值.

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知直线 y = kx - 2 与抛物线 y = x 2 - bx + c ( b c 为常数, b > 0 ) 的一个交点为 A ( - 1 , 0 ) ,点 M ( m , 0 ) x 轴正半轴上的动点.

(1)当直线 y = kx - 2 与抛物线 y = x 2 - bx + c ( b c 为常数, b > 0 ) 的另一个交点为该抛物线的顶点 E 时,求 k b c 的值及抛物线顶点 E 的坐标;

(2)在(1)的条件下,设该抛物线与 y 轴的交点为 C ,若点 Q 在抛物线上,且点 Q 的横坐标为 b ,当 S ΔEQM = 1 2 S ΔACE 时,求 m 的值;

(3)点 D 在抛物线上,且点 D 的横坐标为 b + 1 2 ,当 2 AM + 2 DM 的最小值为 27 2 4 时,求 b 的值.

来源:2020年湖南省湘西州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图所示,抛物线 y = x 2 - 2 x - 3 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 M 为抛物线的顶点.

(1)求点 C 及顶点 M 的坐标.

(2)若点 N 是第四象限内抛物线上的一个动点,连接 BN CN ,求 ΔBCN 面积的最大值及此时点 N 的坐标.

(3)若点 D 是抛物线对称轴上的动点,点 G 是抛物线上的动点,是否存在以点 B C D G 为顶点的四边形是平行四边形.若存在,求出点 G 的坐标;若不存在,试说明理由.

(4)直线 CM x 轴于点 E ,若点 P 是线段 EM 上的一个动点,是否存在以点 P E O 为顶点的三角形与 ΔABC 相似.若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年湖南省怀化市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴交于 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .已知直线 y = kx + n B C 两点.

(1)求抛物线和直线 BC 的表达式;

(2)点 P 是抛物线上的一个动点.

①如图1,若点 P 在第一象限内,连接 PA ,交直线 BC 于点 D .设 ΔPDC 的面积为 S 1 ΔADC 的面积为 S 2 ,求 S 1 S 2 的最大值;

②如图2,抛物线的对称轴 l x 轴交于点 E ,过点 E EF BC ,垂足为 F .点 Q 是对称轴 l 上的一个动点,是否存在以点 E F P Q 为顶点的四边形是平行四边形?若存在,求出点 P Q 的坐标;若不存在,请说明理由.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知 D Rt Δ ABC 斜边 AB 的中点, ACB = 90 ° ABC = 30 ° ,过点 D Rt Δ DEF 使 DEF = 90 ° DFE = 30 ° ,连接 CE 并延长 CE P ,使 EP = CE ,连接 BE FP BP ,设 BC DE 交于 M PB EF 交于 N

(1)如图1,当 D B F 共线时,求证:

EB = EP

EFP = 30 °

(2)如图2,当 D B F 不共线时,连接 BF ,求证: BFD + EFP = 30 °

来源:2020年湖南省常德市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

将抛物线 C : y = ( x - 2 ) 2 向下平移6个单位长度得到抛物线 C 1 ,再将抛物线 C 1 向左平移2个单位长度得到抛物线 C 2

(1)直接写出抛物线 C 1 C 2 的解析式;

(2)如图(1),点 A 在抛物线 C 1 (对称轴 l 右侧)上,点 B 在对称轴 l 上, ΔOAB 是以 OB 为斜边的等腰直角三角形,求点 A 的坐标;

(3)如图(2),直线 y = kx ( k 0 k 为常数)与抛物线 C 2 交于 E F 两点, M 为线段 EF 的中点;直线 y = - 4 k x 与抛物线 C 2 交于 G H 两点, N 为线段 GH 的中点.求证:直线 MN 经过一个定点.

来源:2020年湖北省武汉市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 1 的对称轴为直线 x = 3 2 ,其图象与 x 轴交于点 A 和点 B ( 4 , 0 ) ,与 y 轴交于点 C

(1)直接写出抛物线的解析式和 CAO 的度数;

(2)动点 M N 同时从 A 点出发,点 M 以每秒3个单位的速度在线段 AB 上运动,点 N 以每秒 2 个单位的速度在线段 AC 上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t ( t > 0 ) 秒,连接 MN ,再将线段 MN 绕点 M 顺时针旋转 90 ° ,设点 N 落在点 D 的位置,若点 D 恰好落在抛物线上,求 t 的值及此时点 D 的坐标;

(3)在(2)的条件下,设 P 为抛物线上一动点, Q y 轴上一动点,当以点 C P Q 为顶点的三角形与 ΔMDB 相似时,请直接写出点 P 及其对应的点 Q 的坐标.(每写出一组正确的结果得1分,至多得4分)

来源:2020年湖北省随州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - 1 4 x 2 + bx + c 经过点 C ( 6 , 0 ) ,顶点为 B ,对称轴 x = 2 x 轴相交于点 A D 为线段 BC 的中点.

(1)求抛物线的解析式;

(2) P 为线段 BC 上任意一点, M x 轴上一动点,连接 MP ,以点 M 为中心,将 ΔMPC 逆时针旋转 90 ° ,记点 P 的对应点为 E ,点 C 的对应点为 F .当直线 EF 与抛物线 y = - 1 4 x 2 + bx + c 只有一个交点时,求点 M 的坐标.

(3) ΔMPC 在(2)的旋转变换下,若 PC = 2 (如图 2 )

①求证: EA = ED

②当点 E 在(1)所求的抛物线上时,求线段 CM 的长.

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c 经过点 A ( - 1 , 0 ) 和点 C ( 0 , 3 ) x 轴的另一交点为点 B ,点 M 是直线 BC 上一动点,过点 M MP / / y 轴,交抛物线于点 P

(1)求该抛物线的解析式;

(2)在抛物线上是否存在一点 Q ,使得 ΔQCO 是等边三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由;

(3)以 M 为圆心, MP 为半径作 M ,当 M 与坐标轴相切时,求出 M 的半径.

来源:2020年贵州省遵义市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知抛物线轴交于两点(点在点的左边),与轴交于点,顶点的坐标为

(1)求抛物线的解析式.

(2)在轴上找一点,使得为等腰三角形,请直接写出点的坐标.

(3)点轴上的动点,点是抛物线上的动点,是否存在点,使得以点为顶点,为一边的四边形是平行四边形?若存在,请求出点坐标;若不存在,请说明理由.

来源:2020年贵州省黔东南州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学三角形试题