如图,已知 ∠ MON = 90 ° , OT 是 ∠ MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O 、 P 、 Q 三点作圆,交 OT 于点 C ,连接 PC 、 QC .设运动时间为 t ( s ) ,其中 0 < t < 8 .
(1)求 OP + OQ 的值;
(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.
(3)求四边形 OPCQ 的面积.
化简(每题5分,共15分) (1); (2) (3)已知:,,求.
(1)问题发现 如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:①∠AEB的度数为 ;②线段AD,BE之间的数量关系为 . (2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
如图,长方形纸片ABCD,AD∥BC,将长方形纸片折叠,使点D与点B重合,点C落在点C'处,折痕为EF, (1)求证:BE=BF. (2)若∠ABE=18°,求∠BFE的度数. (3)若AB=6,AD=8,求AE的长.
如图,在四边形地块ABCD中,∠B=90°,AB=30m,BC=40m,CD=130m,AD=120m,求这块地的面积。
如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.