如图,已知 ∠ MON = 90 ° , OT 是 ∠ MON 的平分线, A 是射线 OM 上一点, OA = 8 cm .动点 P 从点 A 出发,以 1 cm / s 的速度沿 AO 水平向左作匀速运动,与此同时,动点 Q 从点 O 出发,也以 1 cm / s 的速度沿 ON 竖直向上作匀速运动.连接 PQ ,交 OT 于点 B .经过 O 、 P 、 Q 三点作圆,交 OT 于点 C ,连接 PC 、 QC .设运动时间为 t ( s ) ,其中 0 < t < 8 .
(1)求 OP + OQ 的值;
(2)是否存在实数 t ,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在,说明理由.
(3)求四边形 OPCQ 的面积.
已知a、b、c满足 ⑴求a、b、c的值; ⑵试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由。
若x=1是方程mx2+3x+n=0的根,求(m-n)2+4mn的值。
用适当的方法解下列方程 (1) (2)
计算:(1); (2)
随着我国经济的发展,股市得到迅速的发展,某支股票上个周五的收盘价为20元,下表是这支股票本周星期一至星期五的变化情况.(注:股市星期一至星期五开市,星期六、星期日休市) 问(1)这支股票本周星期一的收盘价是多少? (2)这支股票本周星期三的收盘价是多少? (3)上周,股民李华以周五的收盘价20元/股买入这支股票1000股,本周,李华以周五的收盘价全部卖出这支股票1000股。按照国家规定,买(或卖)股票都要缴纳印花税、佣金等的股票交易费用,若规定,股票交易费用为买(或卖)股票的总成交金额的0.45%,那么,李华在这次买卖中,盈利还是亏损了多少?