请看下面的解题过程:“比较2100与375大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小。
如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF。
计算:
如图,已知反比例函数y=过点P, P点的坐标为(3-m,2m),m是分式方程的解,PA⊥x轴于点A,PB⊥y轴于点B.(1)试判断四边形PAOB的形状,并说明理由.(2)连结AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连结OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明.(3)若M为反比例函数y=在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.
已知:如图,梯形ABCD中,AD∥BC,∠ABC=90°.(1)如图1,若AC⊥BD,且AC=5,BD=3,则S梯形ABCD= ;(2)如图2,若DE⊥BC于E,BD=BC,F是CD的中点,试问:∠BAF与∠BCD的大小关系如何?请写出你的结论并加以证明;(3)在(2)的条件下,若AD=EC,= .
一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度;(3)若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过每小时120公里,最低车速不得低于每小时60公里,试问返程时间的范围是多少?