已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,-3),顶点D的坐标为(1,-4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得ΔEAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
求证:不论k为何值,一次函数(2k-1)x- (k+3)y-(k-11)=0的图像恒过一定点.
如图,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E,与AB相切于点F,连接EF。(1)判断EF与AC的位置关系(不必说明理由);;(2)如图(2),过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由。(3)求证:AC与GE的交点O为此圆的圆心.
如图,点A、B、D、在⊙O上,弦AE、BD的延长线相交于点C.。若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)
如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º. (1)求证:PB是⊙O的切线; (2)若⊙O的半径为2,求弦AB及PA,PB的长.
已知关于的一元二次方程2--2=0.若x=-1是这个方程的一个根,求的值和方程的另一根.