初中数学

已知抛物线 c 1 的顶点为 A ( 1 , 4 ) ,与 y 轴的交点为 D ( 0 , 3 )

(1)求 c 1 的解析式;

(2)若直线 l 1 : y = x + m c 1 仅有唯一的交点,求 m 的值;

(3)若抛物线 c 1 关于 y 轴对称的抛物线记作 c 2 ,平行于 x 轴的直线记作 l 2 : y = n .试结合图形回答:当 n 为何值时, l 2 c 1 c 2 共有:①两个交点;②三个交点;③四个交点;

(4)若 c 2 x 轴正半轴交点记作 B ,试在 x 轴上求点 P ,使 ΔPAB 为等腰三角形.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

已知点 O 是正方形 ABCD 对角线 BD 的中点.

(1)如图1,若点 E OD 的中点,点 F AB 上一点,且使得 CEF = 90 ° ,过点 E ME / / AD ,交 AB 于点 M ,交 CD 于点 N .求证:

AEM = FEM ②点 F AB 的中点;

(2)如图2,若点 E OD 上一点,点 F AB 上一点,且使 DE DO = AF AB = 1 3 ,请判断 ΔEFC 的形状,并说明理由;

(3)如图3,若 E OD 上的动点(不与 O D 重合),连接 CE ,过 E 点作 EF CE ,交 AB 于点 F ,当 DE DB = m n 时,请猜想 AF AB 的值(请直接写出结论).

来源:2017年湖南省永州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,动点 M 在以 O 为圆心, AB 为直径的半圆弧上运动(点 M 不与点 A B AB ̂ 的中点 F 重合),连接 OM .过点 M ME AB 于点 E ,以 BE 为边在半圆同侧作正方形 BCDE ,过点 M O 的切线交射线 DC 于点 N ,连接 BM BN

(1)探究:如图一,当动点 M AF ̂ 上运动时;

①判断 ΔOEM ΔMDN 是否成立?请说明理由;

②设 ME + NC MN = k k 是否为定值?若是,求出该定值,若不是,请说明理由;

③设 MBN = α α 是否为定值?若是,求出该定值,若不是,请说明理由;

(2)拓展:如图二,当动点 M FB ̂ 上运动时;

分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)

来源:2017年湖南省湘潭市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 E 为边 AB 上一动点,连接 CE 并将其绕点 C 顺时针旋转 90 ° 得到 CF ,连接 DF ,以 CE CF 为邻边作矩形 CFGE GE AD AC 分别交于点 H M GF CD 延长线于点 N

(1)证明:点 A D F 在同一条直线上;

(2)随着点 E 的移动,线段 DH 是否有最小值?若有,求出最小值;若没有,请说明理由;

(3)连接 EF MN ,当 MN / / EF 时,求 AE 的长.

来源:2017年湖南省衡阳市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

来源:2017年湖南省郴州市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图,直角 ΔABC 中, BAC = 90 ° D BC 上,连接 AD ,作 BF AD 分别交 AD E AC F

(1)如图1,若 BD = BA ,求证: ΔABE ΔDBE

(2)如图2,若 BD = 4 DC ,取 AB 的中点 G ,连接 CG AD M ,求证:① GM = 2 MC ;② A G 2 = AF · AC

来源:2017年湖南省常德市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC y 轴相交于点 E ,矩形 OABC 的边 OC OA 的长是关于 x 的一元二次方程 x 2 12 x + 32 = 0 的两个根, 且 OA > OC

(1) 求线段 OA OC 的长;

(2) 求证: ΔADE ΔCOE ,并求出线段 OE 的长;

(3) 直接写出点 D 的坐标;

(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E C P F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , m ) y 轴负半轴上的一点,连接 AB AC AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A AE 平行于 x 轴,过点 D y 轴平行线交 AE 于点 E

(1)当 m = 3 时,求点 A 的坐标;

(2) DE =   ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;

(3)连接 BD ,过点 A BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A B D F 为顶点的四边形是平行四边形?

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,直角 ΔABC 中, A 为直角, AB = 6 AC = 8 .点 P Q R 分别在 AB BC CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点 P 由点 A 出发以每秒3个单位的速度向点 B 运动,点 Q 由点 B 出发以每秒5个单位的速度向点 C 运动,点 R 由点 C 出发以每秒4个单位的速度向点 A 运动,在运动过程中:

(1)求证: ΔAPR ΔBPQ ΔCQR 的面积相等;

(2)求 ΔPQR 面积的最小值;

(3)用 t (秒 ) ( 0 t 2 ) 表示运动时间,是否存在 t ,使 PQR = 90 ° ?若存在,请直接写出 t 的值;若不存在,请说明理由.

来源:2017年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等腰直角三角形, BAC = 90 ° ,将 ΔABC 绕点 C 顺时针方向旋转得到△ A ' B ' C ,记旋转角为 α ,当 90 ° < α < 180 ° 时,作 A ' D AC ,垂足为 D A ' D B ' C 交于点 E

(1)如图1,当 CA ' D = 15 ° 时,作 A ' EC 的平分线 EF BC 于点 F

①写出旋转角 α 的度数;

②求证: EA ' + EC = EF

(2)如图2,在(1)的条件下,设 P 是直线 A ' D 上的一个动点,连接 PA PF ,若 AB = 2 ,求线段 PA + PF 的最小值.(结果保留根号)

来源:2019年广西贵港市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

已知,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 2 D AC 边上的一个动点,将 ΔABD 沿 BD 所在直线折叠,使点 A 落在点 P 处.

(1)如图1,若点 D AC 中点,连接 PC

①写出 BP BD 的长;

②求证:四边形 BCPD 是平行四边形.

(2)如图2,若 BD = AD ,过点 P PH BC BC 的延长线于点 H ,求 PH 的长.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

以菱形 ABCD 的对角线交点 O 为坐标原点, AC 所在的直线为 x 轴,已知 A ( 4 , 0 ) B ( 0 , 2 ) M ( 0 , 4 ) P 为折线 BCD 上一动点,作 PE y 轴于点 E ,设点 P 的纵坐标为 a

(1)求 BC 边所在直线的解析式;

(2)设 y = M P 2 + O P 2 ,求 y 关于 a 的函数关系式;

(3)当 ΔOPM 为直角三角形时,求点 P 的坐标.

来源:2017年广西百色市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

问题探究:

1.新知学习

若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).

2.解决问题

已知等边三角形ABC的边长为2.

(1)如图一,若 AD BC ,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;

(2)如图二,若 ME BC ,且ME是△ABC的一条面径,求面径ME的长;

(3)如图三,已知DBC的中点,连接ADMAB上的一点 0 AM 1 EDC上的一点,连接MEMEAD交于点O,且 S MOA S DOE

①求证:ME是△ABC的面径;

②连接AE,求证: MD AE

(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)

来源:2016年湖南省永州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线 y 3 8 x 2+ 3 3 4 x 7 3 8 x轴交于点 AB(点 A在点 B右侧),点 D为抛物线的顶点,点 Cy轴的正半轴上, CDx轴于点 F,△ CAD绕点 C顺时针旋转得到△ CFE,点 A恰好旋转到点 F,连接 BE

(1)求点 ABD的坐标;

(2)求证:四边形 BFCE是平行四边形;

(3)如图2,过顶点 DDD 1x轴于点 D 1,点 P是抛物线上一动点,过点 PPMx轴,点 M为垂足,使得△ PAM与△ DD 1 A相似(不含全等).

①求出一个满足以上条件的点 P的横坐标;

②直接回答这样的点 P共有几个?

来源:2019年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

已知Rt△ OAB,∠ OAB=90°,∠ ABO=30°,斜边 OB=4,将Rt△ OAB绕点 O顺时针旋转60°,如图1,连接 BC

(1)填空:∠ OBC  °;

(2)如图1,连接 AC,作 OPAC,垂足为 P,求 OP的长度;

(3)如图2,点 MN同时从点 O出发,在△ OCB边上运动, M沿 OCB路径匀速运动, N沿 OBC路径匀速运动,当两点相遇时运动停止,已知点 M的运动速度为1.5单位/秒,点 N的运动速度为1单位/秒,设运动时间为 x秒,△ OMN的面积为 y,求当 x为何值时 y取得最大值?最大值为多少?

来源:2018年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

初中数学三角形试题