如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC 与 y 轴相交于点 E ,矩形 OABC 的边 OC , OA 的长是关于 x 的一元二次方程 x 2 − 12 x + 32 = 0 的两个根, 且 OA > OC .
(1) 求线段 OA , OC 的长;
(2) 求证: ΔADE ≅ ΔCOE ,并求出线段 OE 的长;
(3) 直接写出点 D 的坐标;
(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E , C , P , F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .
在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为(时),1号队员和其他队员行进的路程分别为(千米),并且与的函数关系如图所示: (1)1号队员折返点的坐标为,如果1号队员与其他队员经过t小时相遇,那么点的坐标为;(用含t的代数式表示) (2)求1号队员与其他队员经过几小时相遇? (3)在什么时间内,1号队员与其他队员之间的距离大于2千米?
“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下: 分组前学生学习兴趣分组后学生学习兴趣 请结合图中信息解答下列问题: (1)求出分组前学生学习兴趣为“高”的所占的百分比为; (2)补全分组后学生学习兴趣的统计图; (3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.
如图,在边长为1的正方形组成的网格中,的顶点均在格点上,其中点,将绕点逆时针旋转后得到. (1)画出; (2)在旋转过程中点所经过的路径长为; (3)求在旋转过程中线段扫过的图形的面积之和.
(1)计算: (2)先化简,再求值:
如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=. (1)求点A,C的坐标; (2)若反比例函数y=的图象经过点E,求k的值; (3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.