如图, 在平面直角坐标系中, 把矩形 OABC 沿对角线 AC 所在直线折叠, 点 B 落在点 D 处, DC 与 y 轴相交于点 E ,矩形 OABC 的边 OC , OA 的长是关于 x 的一元二次方程 x 2 − 12 x + 32 = 0 的两个根, 且 OA > OC .
(1) 求线段 OA , OC 的长;
(2) 求证: ΔADE ≅ ΔCOE ,并求出线段 OE 的长;
(3) 直接写出点 D 的坐标;
(4) 若 F 是直线 AC 上一个动点, 在坐标平面内是否存在点 P ,使以点 E , C , P , F 为顶点的四边形是菱形?若存在, 请直接写出 P 点的坐标;若不存在, 请说明理由 .
(本小题满分12分)在中,已知,且cos2A+2sin=1. (1)求角的大小和边的长; (2)若点在内运动(包括边界),且点到三边的距离之和为d,设点到的距离分别为x,y,试用x,y表示d,并求d的取值范围.
(本小题满分10分)选修4—5:不等式选讲 已知函数 (Ⅰ)求的最大值; (Ⅱ)若关于x的不等式有解,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知倾斜角为的直线经过点P(1,1). (Ⅰ)写出直线l的参数方程; (Ⅱ)设直线l与的值。
(本小题满分10分)选修4—1:几何证明选讲 如图,已知△ABC的两条角平分线AD和CE相交于H,B,E,H,D四点共圆,F在AC上,且∠DEC=∠FEC. (Ⅰ)求∠B的度数; (Ⅱ)证明:AE=4F.
(本小题满分12分)设函数 (Ⅰ)设,讨论函数F(x)的单调性; (Ⅱ)过两点的直线的斜率为,求证: