初中数学

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为      ,此时四边形 ABCD 的形状为      

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

【证明体验】

(1)如图1, AD ΔABC 的角平分线, ADC = 60 ° ,点 E AB 上, AE = AC .求证: DE 平分 ADB

【思考探究】

(2)如图2,在(1)的条件下, F AB 上一点,连结 FC AD 于点 G .若 FB = FC DG = 2 CD = 3 ,求 BD 的长.

【拓展延伸】

(3)如图3,在四边形 ABCD 中,对角线 AC 平分 BAD BCA = 2 DCA ,点 E AC 上, EDC = ABC .若 BC = 5 CD = 2 5 AD = 2 AE ,求 AC 的长.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为 r 、圆心角 90 ° 的扇形 A 2 O B 2 ,矩形 A 2 C 2 EO B 2 D 2 EO ,及若干个缺一边的矩形状框 A 1 C 1 D 1 B 1 A 2 C 2 D 2 B 2 A n B n C n D n OEFG 围成,其中 A 1 G B 1 A 2 B 2 ̂ 上, A 2 A 3 A n B 2 B 3 B n 分别在半径 O A 2 O B 2 上, C 2 C 3 C n D 2 D 3 D n 分别在 E C 2 E D 2 上, EF C 2 D 2 H 2 C 1 D 1 EF H 1 F H 1 = H 1 H 2 = d C 1 D 1 C 2 D 2 C 3 D 3 C n D n 依次等距离平行排放(最后一个矩形状框的边 C n D n 与点 E 间的距离应不超过 d ) A 1 C 1 / / A 2 C 2 / / A 3 C 3 / / / / A n C n

(1)求 d 的值;

(2)问: C n D n 与点 E 间的距离能否等于 d ?如果能,求出这样的 n 的值,如果不能,那么它们之间的距离是多少?

来源:2016年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知,如图①,若 AD ΔABC BAC 的内角平分线,通过证明可得 AB AC = BD CD ,同理,若 AE ΔABC BAC 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:

如图②,在 ΔABC 中, BD = 2 CD = 3 AD ΔABC 的内角平分线,则 ΔABC BC 边上的中线长 l 的取值范围是   

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中,矩形 EFGH 的一边 EF AB 上,顶点 G H 分别在 BC AC 上, CD 是边 AB 上的高, CD GH 于点 I .若 CI = 4 HI = 3 AD = 9 2 .矩形 DFGI 恰好为正方形.

(1)求正方形 DFGI 的边长;

(2)如图2,延长 AB P .使得 AC = CP ,将矩形 EFGH 沿 BP 的方向向右平移,当点 G 刚好落在 CP 上时,试判断移动后的矩形与 ΔCBP 重叠部分的形状是三角形还是四边形,为什么?

(3)如图3,连接 DG ,将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形 DF ' G ' I ' ,正方形 DF ' G ' I ' 分别与线段 DG DB 相交于点 M N ,求 ΔMNG ' 的周长.

来源:2018年湖南省永州市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知 ΔAOB ΔMON 都是等腰直角三角形 ( 2 2 OA < OM < OA ) AOB = MON = 90 °

(1)如图1,连接 AM BN ,求证: AM = BN

(2)将 ΔMON 绕点 O 顺时针旋转.

①如图2,当点 M 恰好在 AB 边上时,求证: A M 2 + B M 2 = 2 O M 2

②当点 A M N 在同一条直线上时,若 OA = 4 OM = 3 ,请直接写出线段 AM 的长.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

已知正方形 ABCD AC BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC E ,过 D DH AE H ,设直线 DH AC N

(1)如图1,当 M 在线段 BO 上时,求证: MO = NO

(2)如图2,当 M 在线段 OD 上,连接 NE ,当 EN / / BD 时,求证: BM = AB

(3)在图3,当 M 在线段 OD 上,连接 NE ,当 NE EC 时,求证: A N 2 = NC AC

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知 ΔABC ΔABD 在同一平面内,点 C D 不重合, ABC = ABD = 30 ° AB = 4 AC = AD = 2 2 ,则 CD 长为   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中, BAC = 90 ° AB = AC

(1)如图1,已知点 D BC 边上, DAE = 90 ° AD = AE ,连结 CE .试探究 BD CE 的关系;

(2)如图2,已知点 D BC 下方, DAE = 90 ° AD = AE ,连结 CE .若 BD AD AB = 2 10 CE = 2 AD BC 于点 F ,求 AF 的长;

(3)如图3,已知点 D BC 下方,连结 AD BD CD .若 CBD = 30 ° BAD > 15 ° A B 2 = 6 A D 2 = 4 + 3 ,求 sin BCD 的值.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, BC = 3 CD ,点 E F 分别是边 AD BC 上的动点,且 AE = CF ,连接 EF ,将矩形 ABCD 沿 EF 折叠,点 C 落在点 G 处,点 D 落在点 H 处.

(1)如图1,当 EH 与线段 BC 交于点 P 时,求证: PE = PF

(2)如图2,当点 P 在线段 CB 的延长线上时, GH AB 于点 M ,求证:点 M 在线段 EF 的垂直平分线上;

(3)当 AB = 5 时,在点 E 由点 A 移动到 AD 中点的过程中,计算出点 G 运动的路线长.

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系 xoy 中,直线 l : y = kx + b x 轴, y 轴于点 E F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D

(1)当 CBD = 15 ° 时,求点 C ' 的坐标.

(2)当图1中的直线 l 经过点 A ,且 k = 3 3 时(如图 2 ) ,求点 D C O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.

(3)当图1中的直线 l 经过点 D C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k b 的值;若不存在,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形试题