初中数学

如图,在矩形 ABCD 中, AB = 3 AD = 4 E F 分别是边 BC CD 上一点, EF AE ,将 ΔECF 沿 EF 翻折得△ EC ' F ,连接 AC ' ,当 BE =   时, ΔAEC ' 是以 AE 为腰的等腰三角形.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴交于 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .已知直线 y = kx + n B C 两点.

(1)求抛物线和直线 BC 的表达式;

(2)点 P 是抛物线上的一个动点.

①如图1,若点 P 在第一象限内,连接 PA ,交直线 BC 于点 D .设 ΔPDC 的面积为 S 1 ΔADC 的面积为 S 2 ,求 S 1 S 2 的最大值;

②如图2,抛物线的对称轴 l x 轴交于点 E ,过点 E EF BC ,垂足为 F .点 Q 是对称轴 l 上的一个动点,是否存在以点 E F P Q 为顶点的四边形是平行四边形?若存在,求出点 P Q 的坐标;若不存在,请说明理由.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1, E ΔABC A 的遥望角,若 A = α ,请用含 α 的代数式表示 E

(2)如图2,四边形 ABCD 内接于 O AD ̂ = BD ̂ ,四边形 ABCD 的外角平分线 DF O 于点 F ,连结 BF 并延长交 CD 的延长线于点 E .求证: BEC ΔABC BAC 的遥望角.

(3)如图3,在(2)的条件下,连结 AE AF ,若 AC O 的直径.

①求 AED 的度数;

②若 AB = 8 CD = 5 ,求 ΔDEF 的面积.

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将抛物线 C : y = ( x - 2 ) 2 向下平移6个单位长度得到抛物线 C 1 ,再将抛物线 C 1 向左平移2个单位长度得到抛物线 C 2

(1)直接写出抛物线 C 1 C 2 的解析式;

(2)如图(1),点 A 在抛物线 C 1 (对称轴 l 右侧)上,点 B 在对称轴 l 上, ΔOAB 是以 OB 为斜边的等腰直角三角形,求点 A 的坐标;

(3)如图(2),直线 y = kx ( k 0 k 为常数)与抛物线 C 2 交于 E F 两点, M 为线段 EF 的中点;直线 y = - 4 k x 与抛物线 C 2 交于 G H 两点, N 为线段 GH 的中点.求证:直线 MN 经过一个定点.

来源:2020年湖北省武汉市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中, ABC = BCD ,点 E 在边 BC 上,且 AE / / CD DE / / AB ,作 CF / / AD 交线段 AE 于点 F ,连接 BF

(1)求证: ΔABF ΔEAD

(2)如图2.若 AB = 9 CD = 5 ECF = AED ,求 BE 的长;

(3)如图3,若 BF 的延长线经过 AD 的中点 M ,求 BE EC 的值.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - 1 4 x 2 + bx + c 经过点 C ( 6 , 0 ) ,顶点为 B ,对称轴 x = 2 x 轴相交于点 A D 为线段 BC 的中点.

(1)求抛物线的解析式;

(2) P 为线段 BC 上任意一点, M x 轴上一动点,连接 MP ,以点 M 为中心,将 ΔMPC 逆时针旋转 90 ° ,记点 P 的对应点为 E ,点 C 的对应点为 F .当直线 EF 与抛物线 y = - 1 4 x 2 + bx + c 只有一个交点时,求点 M 的坐标.

(3) ΔMPC 在(2)的旋转变换下,若 PC = 2 (如图 2 )

①求证: EA = ED

②当点 E 在(1)所求的抛物线上时,求线段 CM 的长.

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,已知四边形 ABCD 是矩形,点 E BA 的延长线上, AE = AD EC BD 相交于点 G ,与 AD 相交于点 F AF = AB

(1)求证: BD EC

(2)若 AB = 1 ,求 AE 的长;

(3)如图2,连接 AG ,求证: EG - DG = 2 AG

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知 ΔABC ΔABD 在同一平面内,点 C D 不重合, ABC = ABD = 30 ° AB = 4 AC = AD = 2 2 ,则 CD 长为   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在扇形 AOB 中,半径 OA = 6 ,点 P OA 上,连结 PB ,将 ΔOBP 沿 PB 折叠得到△ O ' BP

(1)如图1,若 O = 75 ° ,且 BO ' AB ^ 所在的圆相切于点 B

①求 APO ' 的度数.

②求 AP 的长.

(2)如图2, BO ' AB ^ 相交于点 D ,若点 D AB ^ 的中点,且 PD / / OB ,求 AB ^ 的长.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中, BAC = 90 ° AB = AC

(1)如图1,已知点 D BC 边上, DAE = 90 ° AD = AE ,连结 CE .试探究 BD CE 的关系;

(2)如图2,已知点 D BC 下方, DAE = 90 ° AD = AE ,连结 CE .若 BD AD AB = 2 10 CE = 2 AD BC 于点 F ,求 AF 的长;

(3)如图3,已知点 D BC 下方,连结 AD BD CD .若 CBD = 30 ° BAD > 15 ° A B 2 = 6 A D 2 = 4 + 3 ,求 sin BCD 的值.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, BC = 3 CD ,点 E F 分别是边 AD BC 上的动点,且 AE = CF ,连接 EF ,将矩形 ABCD 沿 EF 折叠,点 C 落在点 G 处,点 D 落在点 H 处.

(1)如图1,当 EH 与线段 BC 交于点 P 时,求证: PE = PF

(2)如图2,当点 P 在线段 CB 的延长线上时, GH AB 于点 M ,求证:点 M 在线段 EF 的垂直平分线上;

(3)当 AB = 5 时,在点 E 由点 A 移动到 AD 中点的过程中,计算出点 G 运动的路线长.

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系 xoy 中,直线 l : y = kx + b x 轴, y 轴于点 E F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D

(1)当 CBD = 15 ° 时,求点 C ' 的坐标.

(2)当图1中的直线 l 经过点 A ,且 k = 3 3 时(如图 2 ) ,求点 D C O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.

(3)当图1中的直线 l 经过点 D C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k b 的值;若不存在,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形试题